
Type Systems
Winter Semester 2006

Week 6

November 22

November 22, 2006 - version 1.0

Plan

PREVIOUSLY: untyped lambda calculus

TODAY: types!!

1. Two example languages:

1.1 typing arithmetic expressions
1.2 simply typed lambda calculus (STLC)

2. For each:

2.1 Define types
2.2 Specify typing rules
2.3 Prove soundness: progress and preservation

NEXT: lambda calculus extensions
NEXT: polymorphic typing



Types

Outline

1. begin with a set of terms, a set of values, and an evaluation
relation

2. define a set of types classifying values according to their
“shapes”

3. define a typing relation t : T that classifies terms according
to the shape of the values that result from evaluating them

4. check that the typing relation is sound in the sense that,

4.1 if t : T and t −→∗ v, then v : T
4.2 if t : T, then evaluation of t will not get stuck



Review: Arithmetic Expressions – Syntax
t ::= terms

true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

v ::= values
true true value
false false value
nv numeric value

nv ::= numeric values

0 zero value

succ nv successor value

Evaluation Rules

if true then t2 else t3 −→ t2 (E-IfTrue)

if false then t2 else t3 −→ t3 (E-IfFalse)

t1 −→ t′
1

if t1 then t2 else t3 −→ if t′
1 then t2 else t3

(E-If)



t1 −→ t′
1

succ t1 −→ succ t′
1

(E-Succ)

pred 0 −→ 0 (E-PredZero)

pred (succ nv1) −→ nv1 (E-PredSucc)

t1 −→ t′
1

pred t1 −→ pred t′
1

(E-Pred)

iszero 0 −→ true (E-IszeroZero)

iszero (succ nv1) −→ false (E-IszeroSucc)

t1 −→ t′
1

iszero t1 −→ iszero t′
1

(E-IsZero)

Types

In this language, values have two possible “shapes”: they are
either booleans or numbers.

T ::= types
Bool type of booleans
Nat type of numbers



Typing Rules

true : Bool (T-True)

false : Bool (T-False)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

0 : Nat (T-Zero)

t1 : Nat

succ t1 : Nat
(T-Succ)

t1 : Nat

pred t1 : Nat
(T-Pred)

t1 : Nat

iszero t1 : Bool
(T-IsZero)

Typing Derivations

Every pair (t, T) in the typing relation can be justified by a
derivation tree built from instances of the inference rules.

T-Zero
0 : Nat

T-IsZero
iszero 0 : Bool

T-Zero
0 : Nat

T-Zero
0 : Nat

T-Pred
pred 0 : Nat

T-If
if iszero 0 then 0 else pred 0 : Nat

Proofs of properties about the typing relation often proceed by
induction on typing derivations.



Imprecision of Typing

Like other static program analyses, type systems are generally
imprecise: they do not predict exactly what kind of value will be
returned by every program, but just a conservative (safe)
approximation.

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

Using this rule, we cannot assign a type to

if true then 0 else false

even though this term will certainly evaluate to a number.

Type Safety

The safety (or soundness) of this type system can be expressed by
two properties:

1. Progress: A well-typed term is not stuck

If t : T, then either t is a value or else t −→ t′ for
some t′.

2. Preservation: Types are preserved by one-step evaluation

If t : T and t −→ t′, then t′ : T.



Inversion

Lemma:

1. If true : R, then R = Bool.

2. If false : R, then R = Bool.

3. If if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and
t3 : R.

4. If 0 : R, then R = Nat.

5. If succ t1 : R, then R = Nat and t1 : Nat.

6. If pred t1 : R, then R = Nat and t1 : Nat.

7. If iszero t1 : R, then R = Bool and t1 : Nat.

Proof: ...

This leads directly to a recursive algorithm for calculating the type
of a term...

Inversion

Lemma:

1. If true : R, then R = Bool.

2. If false : R, then R = Bool.

3. If if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and
t3 : R.

4. If 0 : R, then R = Nat.

5. If succ t1 : R, then R = Nat and t1 : Nat.

6. If pred t1 : R, then R = Nat and t1 : Nat.

7. If iszero t1 : R, then R = Bool and t1 : Nat.

Proof: ...

This leads directly to a recursive algorithm for calculating the type
of a term...



Inversion

Lemma:

1. If true : R, then R = Bool.

2. If false : R, then R = Bool.

3. If if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and
t3 : R.

4. If 0 : R, then R = Nat.

5. If succ t1 : R, then R = Nat and t1 : Nat.

6. If pred t1 : R, then R = Nat and t1 : Nat.

7. If iszero t1 : R, then R = Bool and t1 : Nat.

Proof: ...

This leads directly to a recursive algorithm for calculating the type
of a term...

Typechecking Algorithm
typeof(t) = if t = true then Bool

else if t = false then Bool
else if t = if t1 then t2 else t3 then
let T1 = typeof(t1) in
let T2 = typeof(t2) in
let T3 = typeof(t3) in
if T1 = Bool and T2=T3 then T2
else "not typable"

else if t = 0 then Nat
else if t = succ t1 then
let T1 = typeof(t1) in
if T1 = Nat then Nat else "not typable"

else if t = pred t1 then
let T1 = typeof(t1) in
if T1 = Nat then Nat else "not typable"

else if t = iszero t1 then
let T1 = typeof(t1) in
if T1 = Nat then Bool else "not typable"



Properties of the Typing
Relation

Review: Typing Rules

true : Bool (T-True)

false : Bool (T-False)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

0 : Nat (T-Zero)

t1 : Nat

succ t1 : Nat
(T-Succ)

t1 : Nat

pred t1 : Nat
(T-Pred)

t1 : Nat

iszero t1 : Bool
(T-IsZero)



Review: Inversion

Lemma:

1. If true : R, then R = Bool.

2. If false : R, then R = Bool.

3. If if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and
t3 : R.

4. If 0 : R, then R = Nat.

5. If succ t1 : R, then R = Nat and t1 : Nat.

6. If pred t1 : R, then R = Nat and t1 : Nat.

7. If iszero t1 : R, then R = Bool and t1 : Nat.

Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.

Proof:

Recall the syntax of values:

v ::= values

true true value

false false value

nv numeric value

nv ::= numeric values

0 zero value

succ nv successor value

For part 1, if v is true or false, the result is immediate. But v
cannot be 0 or succ nv, since the inversion lemma tells us that v
would then have type Nat, not Bool. Part 2 is similar.



Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

v ::= values

true true value

false false value

nv numeric value

nv ::= numeric values

0 zero value

succ nv successor value

For part 1,

if v is true or false, the result is immediate. But v
cannot be 0 or succ nv, since the inversion lemma tells us that v
would then have type Nat, not Bool. Part 2 is similar.

Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

v ::= values

true true value

false false value

nv numeric value

nv ::= numeric values

0 zero value

succ nv successor value

For part 1, if v is true or false, the result is immediate.

But v
cannot be 0 or succ nv, since the inversion lemma tells us that v
would then have type Nat, not Bool. Part 2 is similar.



Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

v ::= values

true true value

false false value

nv numeric value

nv ::= numeric values

0 zero value

succ nv successor value

For part 1, if v is true or false, the result is immediate. But v
cannot be 0 or succ nv, since the inversion lemma tells us that v
would then have type Nat, not Bool.

Part 2 is similar.

Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

v ::= values

true true value

false false value

nv numeric value

nv ::= numeric values

0 zero value

succ nv successor value

For part 1, if v is true or false, the result is immediate. But v
cannot be 0 or succ nv, since the inversion lemma tells us that v
would then have type Nat, not Bool. Part 2 is similar.



Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on a derivation of t : T.

The T-True, T-False, and T-Zero cases are immediate, since
t in these cases is a value.

Case T-If: t = if t1 then t2 else t3

t1 : Bool t2 : T t3 : T

By the induction hypothesis, either t1 is a value or else there is
some t′1 such that t1 −→ t′1. If t1 is a value, then the canonical
forms lemma tells us that it must be either true or false, in
which case either E-IfTrue or E-IfFalse applies to t. On the
other hand, if t1 −→ t′1, then, by E-If,
t −→ if t′1 then t2 else t3.

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof:

By induction on a derivation of t : T.

The T-True, T-False, and T-Zero cases are immediate, since
t in these cases is a value.

Case T-If: t = if t1 then t2 else t3

t1 : Bool t2 : T t3 : T

By the induction hypothesis, either t1 is a value or else there is
some t′1 such that t1 −→ t′1. If t1 is a value, then the canonical
forms lemma tells us that it must be either true or false, in
which case either E-IfTrue or E-IfFalse applies to t. On the
other hand, if t1 −→ t′1, then, by E-If,
t −→ if t′1 then t2 else t3.



Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on a derivation of t : T.

The T-True, T-False, and T-Zero cases are immediate, since
t in these cases is a value.

Case T-If: t = if t1 then t2 else t3

t1 : Bool t2 : T t3 : T

By the induction hypothesis, either t1 is a value or else there is
some t′1 such that t1 −→ t′1. If t1 is a value, then the canonical
forms lemma tells us that it must be either true or false, in
which case either E-IfTrue or E-IfFalse applies to t. On the
other hand, if t1 −→ t′1, then, by E-If,
t −→ if t′1 then t2 else t3.

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on a derivation of t : T.

The T-True, T-False, and T-Zero cases are immediate, since
t in these cases is a value.

Case T-If: t = if t1 then t2 else t3

t1 : Bool t2 : T t3 : T

By the induction hypothesis, either t1 is a value or else there is
some t′1 such that t1 −→ t′1. If t1 is a value, then the canonical
forms lemma tells us that it must be either true or false, in
which case either E-IfTrue or E-IfFalse applies to t. On the
other hand, if t1 −→ t′1, then, by E-If,
t −→ if t′1 then t2 else t3.



Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on a derivation of t : T.

The T-True, T-False, and T-Zero cases are immediate, since
t in these cases is a value.

Case T-If: t = if t1 then t2 else t3

t1 : Bool t2 : T t3 : T

By the induction hypothesis, either t1 is a value or else there is
some t′1 such that t1 −→ t′1. If t1 is a value, then the canonical
forms lemma tells us that it must be either true or false, in
which case either E-IfTrue or E-IfFalse applies to t. On the
other hand, if t1 −→ t′1, then, by E-If,
t −→ if t′1 then t2 else t3.

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on a derivation of t : T.

The T-True, T-False, and T-Zero cases are immediate, since
t in these cases is a value.

Case T-If: t = if t1 then t2 else t3

t1 : Bool t2 : T t3 : T

By the induction hypothesis, either t1 is a value or else there is
some t′1 such that t1 −→ t′1. If t1 is a value, then the canonical
forms lemma tells us that it must be either true or false, in
which case either E-IfTrue or E-IfFalse applies to t. On the
other hand, if t1 −→ t′1, then, by E-If,
t −→ if t′1 then t2 else t3.



Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on a derivation of t : T.

The cases for rules T-Zero, T-Succ, T-Pred, and T-IsZero
are similar.

(Recommended: Try to reconstruct them.)

Preservation

Theorem: If t : T and t −→ t′, then t′ : T.

Proof: By induction on the given typing derivation.



Preservation

Theorem: If t : T and t −→ t′, then t′ : T.

Proof: By induction on the given typing derivation.

Preservation

Theorem: If t : T and t −→ t′, then t′ : T.

Proof: By induction on the given typing derivation.

Case T-True: t = true T = Bool

Then t is a value.



Preservation

Theorem: If t : T and t −→ t′, then t′ : T.

Proof: By induction on the given typing derivation.

Case T-If:
t = if t1 then t2 else t3 t1 : Bool t2 : T t3 : T

There are three evaluation rules by which t −→ t′ can be derived:
E-IfTrue, E-IfFalse, and E-If. Consider each case separately.

Preservation

Theorem: If t : T and t −→ t′, then t′ : T.

Proof: By induction on the given typing derivation.

Case T-If:
t = if t1 then t2 else t3 t1 : Bool t2 : T t3 : T

There are three evaluation rules by which t −→ t′ can be derived:
E-IfTrue, E-IfFalse, and E-If. Consider each case separately.

Subcase E-IfTrue: t1 = true t′ = t2

Immediate, by the assumption t2 : T.

(E-IfFalse subcase: Similar.)



Preservation

Theorem: If t : T and t −→ t′, then t′ : T.

Proof: By induction on the given typing derivation.

Case T-If:
t = if t1 then t2 else t3 t1 : Bool t2 : T t3 : T

There are three evaluation rules by which t −→ t′ can be derived:
E-IfTrue, E-IfFalse, and E-If. Consider each case separately.

Subcase E-If: t1 −→ t′1 t′ = if t′1 then t2 else t3

Applying the IH to the subderivation of t1 : Bool yields
t′1 : Bool. Combining this with the assumptions that t2 : T and
t3 : T, we can apply rule T-If to conclude that
if t′1 then t2 else t3 : T, that is, t′ : T.

Messing With It



Messing with it: Remove a rule

What if you remove E-PredZero ?

Then pred 0 type checks is stuck, and it is not pred 0 a value.
Thus the progress theorem fails.

Messing with it: Remove a rule

What if you remove E-PredZero ?

Then pred 0 type checks is stuck, and it is not pred 0 a value.
Thus the progress theorem fails.



Messing with it: If

What if you changed the rule for typing if’s to the following:

t1 : Bool t2 : Nat t3 : Nat

if t1 then t2 else t3 : Nat
(T-If)

The system is still sound. Some if’s do not type, but those that
do are fine.

Messing with it: If

What if you changed the rule for typing if’s to the following:

t1 : Bool t2 : Nat t3 : Nat

if t1 then t2 else t3 : Nat
(T-If)

The system is still sound. Some if’s do not type, but those that
do are fine.



Meassing with it: adding bit

t ::= terms
...
bit(t) boolean to natural

1. evaluation rule

2. typing rule

3. progress and preservation updates

The Simply Typed
Lambda-Calculus



The simply typed lambda-calculus

The system we are about to define is commonly called the simply
typed lambda-calculus, or λ→ for short.

Unlike the untyped lambda-calculus, the “pure” form of λ→ (with
no primitive values or operations) is not very interesting; to talk
about λ→, we always begin with some set of “base types.”

I So, strictly speaking, there are many variants of λ→,
depending on the choice of base types.

I For now, we’ll work with a variant constructed over the
booleans.

Untyped lambda-calculus with booleans

t ::= terms
x variable
λx.t abstraction
t t application
true constant true
false constant false
if t then t else t conditional

v ::= values
λx.t abstraction value
true true value
false false value



“Simple Types”

T ::= types
Bool type of booleans
T→T types of functions

What are some examples?

Type Annotations

We now have a choice to make. Do we...

I annotate lambda-abstractions with the expected type of the
argument

λx:T1. t2

(as in most mainstream programming languages), or

I continue to write lambda-abstractions as before

λx. t2

and ask the typing rules to “guess” an appropriate annotation
(as in OCaml)?

Both are reasonable choices, but the first makes the job of defining
the typing rules simpler. Let’s take this choice for now.



Typing rules

true : Bool (T-True)

false : Bool (T-False)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

λx:T1.t2 : T1→T2
(T-Abs)

x:T ∈ Γ

Γ `x : T
(T-Var)

Γ `t1 : T11→T12 Γ `t2 : T11

Γ `t1 t2 : T12
(T-App)

Typing rules

true : Bool (T-True)

false : Bool (T-False)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

???

λx:T1.t2 : T1→T2
(T-Abs)

x:T ∈ Γ

Γ `x : T
(T-Var)

Γ `t1 : T11→T12 Γ `t2 : T11

Γ `t1 t2 : T12
(T-App)



Typing rules

true : Bool (T-True)

false : Bool (T-False)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

Γ, x:T1 `t2 : T2

Γ ` λx:T1.t2 : T1→T2
(T-Abs)

x:T ∈ Γ

Γ `x : T
(T-Var)

Γ `t1 : T11→T12 Γ `t2 : T11

Γ `t1 t2 : T12
(T-App)

Typing rules

Γ `true : Bool (T-True)

Γ `false : Bool (T-False)

Γ `t1 : Bool Γ `t2 : T Γ `t3 : T

Γ `if t1 then t2 else t3 : T
(T-If)

Γ, x:T1 `t2 : T2

Γ ` λx:T1.t2 : T1→T2
(T-Abs)

x:T ∈ Γ

Γ `x : T
(T-Var)

Γ `t1 : T11→T12 Γ `t2 : T11

Γ `t1 t2 : T12
(T-App)



Typing Derivations

What derivations justify the following typing statements?

I ` (λx:Bool.x) true : Bool

I f:Bool→Bool ` f (if false then true else false) :
Bool

I f:Bool→Bool `
λx:Bool. f (if x then false else x) : Bool→Bool

Properties of λ→

The fundamental property of the type system we have just defined
is soundness with respect to the operational semantics.

1. Progress: A closed, well-typed term is not stuck

If ` t : T, then either t is a value or else t −→ t′

for some t′.

2. Preservation: Types are preserved by one-step evaluation

If Γ ` t : T and t −→ t′, then Γ ` t′ : T.



Proving progress

Same steps as before...

I inversion lemma for typing relation

I canonical forms lemma

I progress theorem

Proving progress

Same steps as before...

I inversion lemma for typing relation

I canonical forms lemma

I progress theorem



Inversion

Lemma:

1. If Γ ` true : R, then R = Bool.

2. If Γ ` false : R, then R = Bool.

3. If Γ ` if t1 then t2 else t3 : R, then Γ ` t1 : Bool and
Γ ` t2, t3 : R.

4. If Γ ` x : R, then x:R ∈ Γ.

5. If Γ ` λx:T1.t2 : R, then R = T1→R2 for some R2 with
Γ, x:T1 ` t2 : R2.

6. If Γ ` t1 t2 : R, then there is some type T11 such that
Γ ` t1 : T11→R and Γ ` t2 : T11.

Inversion

Lemma:

1. If Γ ` true : R, then R = Bool.

2. If Γ ` false : R, then R = Bool.

3. If Γ ` if t1 then t2 else t3 : R, then Γ ` t1 : Bool and
Γ ` t2, t3 : R.

4. If Γ ` x : R, then

x:R ∈ Γ.

5. If Γ ` λx:T1.t2 : R, then R = T1→R2 for some R2 with
Γ, x:T1 ` t2 : R2.

6. If Γ ` t1 t2 : R, then there is some type T11 such that
Γ ` t1 : T11→R and Γ ` t2 : T11.



Inversion

Lemma:

1. If Γ ` true : R, then R = Bool.

2. If Γ ` false : R, then R = Bool.

3. If Γ ` if t1 then t2 else t3 : R, then Γ ` t1 : Bool and
Γ ` t2, t3 : R.

4. If Γ ` x : R, then x:R ∈ Γ.

5. If Γ ` λx:T1.t2 : R, then R = T1→R2 for some R2 with
Γ, x:T1 ` t2 : R2.

6. If Γ ` t1 t2 : R, then there is some type T11 such that
Γ ` t1 : T11→R and Γ ` t2 : T11.

Inversion

Lemma:

1. If Γ ` true : R, then R = Bool.

2. If Γ ` false : R, then R = Bool.

3. If Γ ` if t1 then t2 else t3 : R, then Γ ` t1 : Bool and
Γ ` t2, t3 : R.

4. If Γ ` x : R, then x:R ∈ Γ.

5. If Γ ` λx:T1.t2 : R, then

R = T1→R2 for some R2 with
Γ, x:T1 ` t2 : R2.

6. If Γ ` t1 t2 : R, then there is some type T11 such that
Γ ` t1 : T11→R and Γ ` t2 : T11.



Inversion

Lemma:

1. If Γ ` true : R, then R = Bool.

2. If Γ ` false : R, then R = Bool.

3. If Γ ` if t1 then t2 else t3 : R, then Γ ` t1 : Bool and
Γ ` t2, t3 : R.

4. If Γ ` x : R, then x:R ∈ Γ.

5. If Γ ` λx:T1.t2 : R, then R = T1→R2 for some R2 with
Γ, x:T1 ` t2 : R2.

6. If Γ ` t1 t2 : R, then there is some type T11 such that
Γ ` t1 : T11→R and Γ ` t2 : T11.

Inversion

Lemma:

1. If Γ ` true : R, then R = Bool.

2. If Γ ` false : R, then R = Bool.

3. If Γ ` if t1 then t2 else t3 : R, then Γ ` t1 : Bool and
Γ ` t2, t3 : R.

4. If Γ ` x : R, then x:R ∈ Γ.

5. If Γ ` λx:T1.t2 : R, then R = T1→R2 for some R2 with
Γ, x:T1 ` t2 : R2.

6. If Γ ` t1 t2 : R, then

there is some type T11 such that
Γ ` t1 : T11→R and Γ ` t2 : T11.



Inversion

Lemma:

1. If Γ ` true : R, then R = Bool.

2. If Γ ` false : R, then R = Bool.

3. If Γ ` if t1 then t2 else t3 : R, then Γ ` t1 : Bool and
Γ ` t2, t3 : R.

4. If Γ ` x : R, then x:R ∈ Γ.

5. If Γ ` λx:T1.t2 : R, then R = T1→R2 for some R2 with
Γ, x:T1 ` t2 : R2.

6. If Γ ` t1 t2 : R, then there is some type T11 such that
Γ ` t1 : T11→R and Γ ` t2 : T11.

Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1→T2, then v has the form λx:T1.t2.



Canonical Forms

Lemma:

1. If v is a value of type Bool, then

v is either true or false.

2. If v is a value of type T1→T2, then v has the form λx:T1.t2.

Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1→T2, then v has the form λx:T1.t2.



Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1→T2, then

v has the form λx:T1.t2.

Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1→T2, then v has the form λx:T1.t2.



Progress

Theorem: Suppose t is a closed, well-typed term (that is, ` t : T
for some T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction

on typing derivations. The cases for boolean
constants and conditions are the same as before. The variable case
is trivial (because t is closed). The abstraction case is immediate,
since abstractions are values.
Consider the case for application, where t = t1 t2 with
` t1 : T11→T12 and ` t2 : T11. By the induction hypothesis,
either t1 is a value or else it can make a step of evaluation, and
likewise t2. If t1 can take a step, then rule E-App1 applies to t.
If t1 is a value and t2 can take a step, then rule E-App2 applies.
Finally, if both t1 and t2 are values, then the canonical forms
lemma tells us that t1 has the form λx:T11.t12, and so rule
E-AppAbs applies to t.

Progress

Theorem: Suppose t is a closed, well-typed term (that is, ` t : T
for some T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on typing derivations.

The cases for boolean
constants and conditions are the same as before. The variable case
is trivial (because t is closed). The abstraction case is immediate,
since abstractions are values.
Consider the case for application, where t = t1 t2 with
` t1 : T11→T12 and ` t2 : T11. By the induction hypothesis,
either t1 is a value or else it can make a step of evaluation, and
likewise t2. If t1 can take a step, then rule E-App1 applies to t.
If t1 is a value and t2 can take a step, then rule E-App2 applies.
Finally, if both t1 and t2 are values, then the canonical forms
lemma tells us that t1 has the form λx:T11.t12, and so rule
E-AppAbs applies to t.



Progress

Theorem: Suppose t is a closed, well-typed term (that is, ` t : T
for some T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on typing derivations. The cases for boolean
constants and conditions are the same as before. The variable case
is trivial (because t is closed). The abstraction case is immediate,
since abstractions are values.

Consider the case for application, where t = t1 t2 with
` t1 : T11→T12 and ` t2 : T11. By the induction hypothesis,
either t1 is a value or else it can make a step of evaluation, and
likewise t2. If t1 can take a step, then rule E-App1 applies to t.
If t1 is a value and t2 can take a step, then rule E-App2 applies.
Finally, if both t1 and t2 are values, then the canonical forms
lemma tells us that t1 has the form λx:T11.t12, and so rule
E-AppAbs applies to t.

Progress

Theorem: Suppose t is a closed, well-typed term (that is, ` t : T
for some T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on typing derivations. The cases for boolean
constants and conditions are the same as before. The variable case
is trivial (because t is closed). The abstraction case is immediate,
since abstractions are values.
Consider the case for application, where t = t1 t2 with
` t1 : T11→T12 and ` t2 : T11.

By the induction hypothesis,
either t1 is a value or else it can make a step of evaluation, and
likewise t2. If t1 can take a step, then rule E-App1 applies to t.
If t1 is a value and t2 can take a step, then rule E-App2 applies.
Finally, if both t1 and t2 are values, then the canonical forms
lemma tells us that t1 has the form λx:T11.t12, and so rule
E-AppAbs applies to t.



Progress

Theorem: Suppose t is a closed, well-typed term (that is, ` t : T
for some T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on typing derivations. The cases for boolean
constants and conditions are the same as before. The variable case
is trivial (because t is closed). The abstraction case is immediate,
since abstractions are values.
Consider the case for application, where t = t1 t2 with
` t1 : T11→T12 and ` t2 : T11. By the induction hypothesis,
either t1 is a value or else it can make a step of evaluation, and
likewise t2.

If t1 can take a step, then rule E-App1 applies to t.
If t1 is a value and t2 can take a step, then rule E-App2 applies.
Finally, if both t1 and t2 are values, then the canonical forms
lemma tells us that t1 has the form λx:T11.t12, and so rule
E-AppAbs applies to t.

Progress

Theorem: Suppose t is a closed, well-typed term (that is, ` t : T
for some T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on typing derivations. The cases for boolean
constants and conditions are the same as before. The variable case
is trivial (because t is closed). The abstraction case is immediate,
since abstractions are values.
Consider the case for application, where t = t1 t2 with
` t1 : T11→T12 and ` t2 : T11. By the induction hypothesis,
either t1 is a value or else it can make a step of evaluation, and
likewise t2. If t1 can take a step, then rule E-App1 applies to t.
If t1 is a value and t2 can take a step, then rule E-App2 applies.
Finally, if both t1 and t2 are values, then the canonical forms
lemma tells us that t1 has the form λx:T11.t12, and so rule
E-AppAbs applies to t.


