
Type Systems
Winter Semester 2006

Week 5

November 15

November 15, 2006 - version 1.0

Programming in the
Lambda-Calculus, Continued

Testing booleans

Recall:

tru = λt. λf. t
fls = λt. λf. f

We showed last time that, if b is a boolean (i.e., it behaves like
either tru or fls), then, for any values v and w, either

b v w −→∗ v

(if b behaves like tru) or

b v w −→∗ w

(if b behaves like fls).

Testing booleans

But what if we apply a boolean to terms that are not values?

E.g., what is the result of evaluating

tru c0 omega ?

Not what we want!

Testing booleans

But what if we apply a boolean to terms that are not values?

E.g., what is the result of evaluating

tru c0 omega ?

Not what we want!

A better way

A dummy “unit value,” for forcing evaluation of thunks:

unit = λx. x

A “conditional function”:

test = λb. λt. λf. b t f unit

If b is a boolean (i.e., it behaves like either tru or fls), then, for
arbitrary terms s and t, either

b (λdummy. s) (λdummy. t) −→∗ s

(if b behaves like tru) or

b (λdummy. s) (λdummy. t) −→∗ t

(if b behaves like fls).

Review: The Z Operator

In the last lecture, we defined an operator Z that calculates the
“fixed point” of a function it is applied to:

z
=

λf. λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

That is, z f v −→∗ f (z f) v.

(N.b.: I’m writing it with a lower-case z today so that code
snippets in the lecture notes can literally be typed into the
fulluntyped interpreter, which expects identifiers to begin with
lowercase letters.)

Factorial

As an example, we defined the factorial function in
lambda-calculus as follows:

fact = z (λfct.
λn.
if n=0 then 1
else n * (fct (pred n)))

For the sake of the example, we used “regular” booleans, numbers,
etc.

I claimed that all this could be translated “straightforwardly” into
the pure lambda-calculus.

Let’s do this.

Factorial

badfact =
z (λfct.

λn.
iszro n
c1
(times n (fct (prd n))))

Why is this not what we want?

(Hint: What happens when we evaluate badfact c0?)

Factorial

badfact =
z (λfct.

λn.
iszro n
c1
(times n (fct (prd n))))

Why is this not what we want?

(Hint: What happens when we evaluate badfact c0?)

Factorial

A better version:

fact =
fix (λfct.

λn.
test (iszro n)

(λdummy. c1)
(λdummy. (times n (fct (prd n)))))

Displaying numbers

fact c6 −→∗

(λs. λz.
s ((λs. λz.

s ((λs. λz.
s ((λs. λz.

s ((λs. λz.
s ((λs. λz.

s ((λs. λz.z)
s z))

s z))
s z))

s z))
s z))

s z))

Ugh!

Displaying numbers

fact c6 −→∗

(λs. λz.
s ((λs. λz.

s ((λs. λz.
s ((λs. λz.

s ((λs. λz.
s ((λs. λz.

s ((λs. λz.z)
s z))

s z))
s z))

s z))
s z))

s z))

Ugh!

Displaying numbers

If we enrich the pure lambda-calculus with “regular numbers,” we
can display church numerals by converting them to regular
numbers:

realnat = λn. n (λm. succ m) 0

Now:

realnat (times c2 c2)
−→∗

succ (succ (succ (succ zero))).

Displaying numbers

Alternatively, we can convert a few specific numbers to the form
we want like this:

whack =
λn. (equal n c0) c0

((equal n c1) c1
((equal n c2) c2
((equal n c3) c3
((equal n c4) c4
((equal n c5) c5
((equal n c6) c6

n))))))

Now:

whack (fact c3)
−→∗

λs. λz. s (s (s (s (s (s z)))))

A Larger Example

In the second homework assignment, we saw how to encode an
infinite stream as a thunk yielding a pair of a head element and
another thunk representing the rest of the stream. The same
encoding also works in the lambda-calculus.

Head and tail functions for streams:

streamhd = λs. fst (s unit)
streamtl = λs. snd (s unit)

A stream of increasing numbers:

upfrom =
fix
(λr.

λn.
λdummy.
pair n (r (scc n)))

Some tests:

whack (streamhd (upfrom c0))
−→∗ c0

whack (streamhd (streamtl (upfrom c0)))
−→∗ c2

whack (streamhd (streamtl (streamtl (upfrom c0))))
−→∗ c4

Mapping over streams:

streammap =
fix
(λsm.

λf.
λs.

λdummy.
pair (f (streamhd s)) (sm f (streamtl s)))

Some tests:

evens = streammap double (upfrom c0);
whack (streamhd evens);

/* yields c0 */
whack (streamhd (streamtl evens));

/* yields c2 */
whack (streamhd (streamtl (streamtl evens)));

/* yields c4 */

Equivalence of Lambda Terms

Representing Numbers

We have seen how certain terms in the lambda-calculus can be
used to represent natural numbers.

c0 = λs. λz. z
c1 = λs. λz. s z
c2 = λs. λz. s (s z)
c3 = λs. λz. s (s (s z))

Other lambda-terms represent common operations on numbers:

scc = λn. λs. λz. s (n s z)

In what sense can we say this representation is “correct”?
In particular, on what basis can we argue that scc on church
numerals corresponds to ordinary successor on numbers?

Representing Numbers

We have seen how certain terms in the lambda-calculus can be
used to represent natural numbers.

c0 = λs. λz. z
c1 = λs. λz. s z
c2 = λs. λz. s (s z)
c3 = λs. λz. s (s (s z))

Other lambda-terms represent common operations on numbers:

scc = λn. λs. λz. s (n s z)

In what sense can we say this representation is “correct”?
In particular, on what basis can we argue that scc on church
numerals corresponds to ordinary successor on numbers?

The naive approach

... doesn’t work

One possibility:

For each n, the term scc cn evaluates to cn+1.

Unfortunately, this is false.
E.g.:

scc c2 = (λn. λs. λz. s (n s z)) (λs. λz. s (s z))
−→ λs. λz. s ((λs. λz. s (s z)) s z)
6= λs. λz. s (s (s z))
= c3

The naive approach... doesn’t work

One possibility:

For each n, the term scc cn evaluates to cn+1.

Unfortunately, this is false.
E.g.:

scc c2 = (λn. λs. λz. s (n s z)) (λs. λz. s (s z))
−→ λs. λz. s ((λs. λz. s (s z)) s z)
6= λs. λz. s (s (s z))
= c3

A better approach

Recall the intuition behind the church numeral representation:

I a number n is represented as a term that “does something n
times to something else”

I scc takes a term that “does something n times to something
else” and returns a term that “does something n + 1 times to
something else”

I.e., what we really care about is that scc c2 behaves the same as
c3 when applied to two arguments.

scc c2 v w = (λn. λs. λz. s (n s z)) (λs. λz. s (s z)) v w
−→(λs. λz. s ((λs. λz. s (s z)) s z)) v w
−→(λz. v ((λs. λz. s (s z)) v z)) w
−→v ((λs. λz. s (s z)) v w)
−→v ((λz. v (v z)) w)
−→v (v (v w))

c3 v w = (λs. λz. s (s (s z))) v w
−→(λz. v (v (v z))) w
−→v (v (v w)))

A general question

We have argued that, although scc c2 and c3 do not evaluate to
the same thing, they are nevertheless “behaviorally equivalent.”

What, precisely, does behavioral equivalence mean?

Intuition

Roughly,

“terms s and t are behaviorally equivalent”

should mean:

“there is no ‘test’ that distinguishes s and t — i.e., no way to
put them in the same context and observe different results.”

To make this precise, we need to be clear what we mean by a
testing context and how we are going to observe the results of a
test.

Intuition

Roughly,

“terms s and t are behaviorally equivalent”

should mean:

“there is no ‘test’ that distinguishes s and t — i.e., no way to
put them in the same context and observe different results.”

To make this precise, we need to be clear what we mean by a
testing context and how we are going to observe the results of a
test.

Examples

tru = λt. λf. t
tru’ = λt. λf. (λx.x) t
fls = λt. λf. f
omega = (λx. x x) (λx. x x)
poisonpill = λx. omega
placebo = λx. tru
Yf = (λx. f (x x)) (λx. f (x x))

Which of these are behaviorally equivalent?

Observational equivalence

As a first step toward defining behavioral equivalence, we can use
the notion of normalizability to define a simple notion of test.

Two terms s and t are said to be observationally equivalent if
either both are normalizable (i.e., they reach a normal form
after a finite number of evaluation steps) or both diverge.

I.e., we “observe” a term’s behavior simply by running it and
seeing if it halts.

Aside:

I Is observational equivalence a decidable property?

I Does this mean the definition is ill-formed?

Observational equivalence

As a first step toward defining behavioral equivalence, we can use
the notion of normalizability to define a simple notion of test.

Two terms s and t are said to be observationally equivalent if
either both are normalizable (i.e., they reach a normal form
after a finite number of evaluation steps) or both diverge.

I.e., we “observe” a term’s behavior simply by running it and
seeing if it halts.

Aside:

I Is observational equivalence a decidable property?

I Does this mean the definition is ill-formed?

Observational equivalence

As a first step toward defining behavioral equivalence, we can use
the notion of normalizability to define a simple notion of test.

Two terms s and t are said to be observationally equivalent if
either both are normalizable (i.e., they reach a normal form
after a finite number of evaluation steps) or both diverge.

I.e., we “observe” a term’s behavior simply by running it and
seeing if it halts.

Aside:

I Is observational equivalence a decidable property?

I Does this mean the definition is ill-formed?

Examples

I omega and tru are not observationally equivalent

I tru and fls are observationally equivalent

Examples

I omega and tru are not observationally equivalent

I tru and fls are observationally equivalent

Behavioral Equivalence

This primitive notion of observation now gives us a way of
“testing” terms for behavioral equivalence

Terms s and t are said to be behaviorally equivalent if, for
every finite sequence of values v1, v2, ..., vn, the
applications

s v1 v2 ... vn

and
t v1 v2 ... vn

are observationally equivalent.

Examples

These terms are behaviorally equivalent:

tru = λt. λf. t
tru’ = λt. λf. (λx.x) t

So are these:

omega = (λx. x x) (λx. x x)
Yf = (λx. f (x x)) (λx. f (x x))

These are not behaviorally equivalent (to each other, or to any of
the terms above):

fls = λt. λf. f
poisonpill = λx. omega
placebo = λx. tru

Proving behavioral equivalence

Given terms s and t, how do we prove that they are (or are not)
behaviorally equivalent?

Proving behavioral inequivalence

To prove that s and t are not behaviorally equivalent, it suffices to
find a sequence of values v1 . . . vn such that one of

s v1 v2 ... vn

and
t v1 v2 ... vn

diverges, while the other reaches a normal form.

Proving behavioral inequivalence

Example:

I the single argument unit demonstrates that fls is not
behaviorally equivalent to poisonpill:

fls unit
= (λt. λf. f) unit

−→∗ λf. f

poisonpill unit
diverges

Proving behavioral inequivalence

Example:

I the argument sequence (λx. x) poisonpill (λx. x)
demonstrate that tru is not behaviorally equivalent to fls:

tru (λx. x) poisonpill (λx. x)
−→∗ (λx. x)(λx. x)

−→∗ λx. x

fls (λx. x) poisonpill (λx. x)
−→∗ poisonpill (λx. x), which diverges

Proving behavioral equivalence

To prove that s and t are behaviorally equivalent, we have to work
harder: we must show that, for every sequence of values v1 . . . vn,
either both

s v1 v2 ... vn

and
t v1 v2 ... vn

diverge, or else both reach a normal form.

How can we do this?

Proving behavioral equivalence

In general, such proofs require some additional machinery that we
will not have time to get into in this course (so-called applicative
bisimulation). But, in some cases, we can find simple proofs.
Theorem: These terms are behaviorally equivalent:

tru = λt. λf. t
tru’ = λt. λf. (λx.x) t

Proof: Consider an arbitrary sequence of values v1 . . . vn.

I For the case where the sequence has just one element (i.e.,
n = 1), note that both tru v1 and tru′ v1 reach normal
forms after one reduction step.

I For the case where the sequence has more than one element
(i.e., n > 1), note that both tru v1 v2 v3 ... vn and
tru′ v1 v2 v3 ... vn reduce (in two steps) to
v1 v3 ... vn. So either both normalize or both diverge.

Proving behavioral equivalence

Theorem: These terms are behaviorally equivalent:

omega = (λx. x x) (λx. x x)
Yf = (λx. f (x x)) (λx. f (x x))

Proof: Both

omega v1 . . . vn

and

Yf v1 . . . vn

diverge, for every sequence of arguments v1 . . . vn.

Inductive Proofs about the
Lambda Calculus

Two induction principles

Like before, we have two ways to prove that properties are true of
the untyped lambda calculus.

I Structural induction on terms

I Induction on a derivation of t −→ t′.

Let’s look at an example of each.

Structural induction on terms

To show that a property P holds for all lambda-terms t, it suffices
to show that

I P holds when t is a variable;

I P holds when t is a lambda-abstraction λx. t1, assuming
that P holds for the immediate subterm t1; and

I P holds when t is an application t1 t2, assuming that P
holds for the immediate subterms t1 and t2.

N.b.: The variant of this principle where “immediate subterm” is
replaced by “arbitrary subterm” is also valid. (Cf. ordinary
induction vs. complete induction on the natural numbers.)

Structural induction on terms

To show that a property P holds for all lambda-terms t, it suffices
to show that

I P holds when t is a variable;

I P holds when t is a lambda-abstraction λx. t1, assuming
that P holds for the immediate subterm t1; and

I P holds when t is an application t1 t2, assuming that P
holds for the immediate subterms t1 and t2.

N.b.: The variant of this principle where “immediate subterm” is
replaced by “arbitrary subterm” is also valid. (Cf. ordinary
induction vs. complete induction on the natural numbers.)

An example of structural induction on terms

Define the set of free variables in a lambda-term as follows:

FV (x) = {x}
FV (λx.t1) = FV (t1) \ {x}
FV (t1 t2) = FV (t1) ∪ FV (t2)

Define the size of a lambda-term as follows:

size(x) = 1
size(λx.t1) = size(t1) + 1
size(t1 t2) = size(t1) + size(t2) + 1

Theorem: |FV (t)| ≤ size(t).

An example of structural induction on terms

Theorem: |FV (t)| ≤ size(t).

Proof: By induction on the structure of t.

I If t is a variable, then |FV (t)| = 1 = size(t).

I If t is an abstraction λx. t1, then
|FV (t)|

= |FV (t1) \ {x}| by defn
≤ |FV (t1)| by arithmetic
≤ size(t1) by induction hypothesis
≤ size(t1) + 1 by arithmetic
= size(t) by defn.

An example of structural induction on terms

Theorem: |FV (t)| ≤ size(t).

Proof: By induction on the structure of t.

I If t is an application t1 t2, then
|FV (t)|

= |FV (t1) ∪ FV (t2)| by defn
≤ max(|FV (t1)|, |FV (t2)|) by arithmetic
≤ max(size(t1), size(t2)) by IH and arithmetic
≤ |size(t1)|+ |size(t2)| by arithmetic
≤ |size(t1)|+ |size(t2)|+ 1 by arithmetic
= size(t) by defn.

Induction on derivations

Recall that the reduction relation is defined as the smallest binary
relation on terms satisfying the following rules:

(λx.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

t1 −→ t′
1

t1 t2 −→ t′
1 t2

(E-App1)

t2 −→ t′
2

v1 t2 −→ v1 t′
2

(E-App2)

Induction on derivations

Induction principle for the small-step evaluation relation.

To show that a property P holds for all derivations of t −→ t′, it
suffices to show that

I P holds for all derivations that use the rule E-AppAbs;

I P holds for all derivations that end with a use of E-App1
assuming that P holds for all subderivations; and

I P holds for all derivations that end with a use of E-App2
assuming that P holds for all subderivations.

Example

Theorem: if t −→ t′ then FV (t) ⊇ FV (t′).

Induction on derivations

We must prove, for all derivations of t −→ t′, that
FV (t) ⊇ FV (t′).

There are three cases.

I If the derivation of t −→ t′ is just a use of E-AppAbs, then t
is (λx.t1)v and t′ is [x|→v]t1. Reason as follows:

FV (t) = FV ((λx.t1)v)
= FV (t1)/{x} ∪ FV (v)
⊇ FV ([x|→v]t1)
= FV (t′)

Induction on derivations

We must prove, for all derivations of t −→ t′, that
FV (t) ⊇ FV (t′).

There are three cases.

I If the derivation of t −→ t′ is just a use of E-AppAbs, then t
is (λx.t1)v and t′ is [x|→v]t1. Reason as follows:

FV (t) = FV ((λx.t1)v)
= FV (t1)/{x} ∪ FV (v)
⊇ FV ([x|→v]t1)
= FV (t′)

I If the derivation ends with a use of E-App1, then t has the
form t1 t2 and t′ has the form t′

1 t2, and we have a
subderivation of t1 −→ t′

1

By the induction hypothesis, FV (t1) ⊇ FV (t′
1). Now

calculate:
FV (t) = FV (t1 t2)

= FV (t1) ∪ FV (t2)
⊇ FV (t′

1) ∪ FV (t2)
= FV (t′

1 t2)
= FV (t ′)

I If the derivation ends with a use of E-App2, the argument is
similar to the previous case.

I If the derivation ends with a use of E-App1, then t has the
form t1 t2 and t′ has the form t′

1 t2, and we have a
subderivation of t1 −→ t′

1

By the induction hypothesis, FV (t1) ⊇ FV (t′
1). Now

calculate:
FV (t) = FV (t1 t2)

= FV (t1) ∪ FV (t2)
⊇ FV (t′

1) ∪ FV (t2)
= FV (t′

1 t2)
= FV (t ′)

I If the derivation ends with a use of E-App2, the argument is
similar to the previous case.

