Type Systems
 Winter Semester 2006

Week 4

November 8

November 15, 2006 - version 1.1

The lambda-calculus

- If our previous language of arithmetic expressions was the simplest nontrivial programming language, then the lambda-calculus is the simplest interesting programming language...
- Turing complete
- higher order (functions as data)
- Indeed, in the lambda-calculus, all computation happens by means of function abstraction and application.
- The e. coli of programming language research
- The foundation of many real-world programming language designs (including ML, Haskell, Scheme, Lisp, ...)

The Lambda Calculus

Intuitions

Suppose we want to describe a function that adds three to any number we pass it. We might write

$$
\text { plus3 } x=\operatorname{succ}(\operatorname{succ}(\operatorname{succ} x))
$$

That is, "plus3 x is succ (succ (succ x))."

Intuitions

Suppose we want to describe a function that adds three to any number we pass it. We might write

$$
\text { plus3 } x=\operatorname{succ}(\operatorname{succ}(\operatorname{succ} x))
$$

That is, "plus3 x is succ $(\operatorname{succ}(\operatorname{succ} x))$."
Q: What is plus3 itself?

Intuitions

Suppose we want to describe a function that adds three to any number we pass it. We might write

$$
\text { plus3 } x=\operatorname{succ}(\operatorname{succ}(\operatorname{succ} x))
$$

That is, "plus3 x is succ (succ (succ x))."
Q: What is plus3 itself?
A: plus3 is the function that, given x, yields succ (succ (succ x)).

Intuitions

Suppose we want to describe a function that adds three to any number we pass it. We might write

$$
\text { plus3 } x=\operatorname{succ}(\operatorname{succ}(\operatorname{succ} x))
$$

That is, "plus3 x is succ $(\operatorname{succ}(\operatorname{succ} x)) . "$
Q: What is plus3 itself?
A: plus3 is the function that, given x, yields succ (succ (succ x)).

$$
\text { plus3 }=\lambda x \cdot \operatorname{succ}(\operatorname{succ}(\operatorname{succ} x))
$$

This function exists independent of the name plus3.

$$
\lambda \mathrm{x} . \mathrm{t} \text { is written "fun } \mathrm{x} \rightarrow \mathrm{t} \text { " in OCaml and " } \mathrm{x} \Rightarrow \mathrm{t} \text { " in Scala. }
$$

So plus3 (succ 0) is just a convenient shorthand for "the function that, given x, yields succ ($\operatorname{succ}(\operatorname{succ} x)$), applied to succ 0."

plus3 (succ 0)
=
$(\lambda x . \operatorname{succ}(\operatorname{succ}(\operatorname{succ} x)))(\operatorname{succ} 0)$

Abstractions over Functions

Consider the λ-abstraction

```
g = \lambdaf. f (f (succ 0))
```

Note that the parameter variable f is used in the function position in the body of g. Terms like g are called higher-order functions. If we apply g to an argument like plus3, the "substitution rule" yields a nontrivial computation:

g plus3

$=(\lambda f . f(f(\operatorname{succ} 0)))(\lambda x . \operatorname{succ}(\operatorname{succ}(\operatorname{succ} x)))$
i.e. $(\lambda x . \operatorname{succ}(\operatorname{succ}(\operatorname{succ} x)))$

$$
((\lambda x . \operatorname{succ}(\operatorname{succ}(\operatorname{succ} x)))(\operatorname{succ} 0))
$$

i.e. $(\lambda x . \operatorname{succ}(\operatorname{succ}(\operatorname{succ} x)))$
(succ (succ (succ (succ 0))))
i.e. $\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(\operatorname{succ} 0)))))$

Example

```
    double plus3 0
= (\lambdaf. \lambday.f (f y))
            (\lambdax. succ (succ (succ x)))
            0
i.e. ( }\lambda\textrm{y}.(\lambda\textrm{x}.\operatorname{succ}(\operatorname{succ}(\operatorname{succ}\textrm{x}))
            ((\lambdax. succ (succ (succ x))) y))
            0
i.e. (\lambdax. succ (succ (succ x)))
            ((\lambdax. succ (succ (succ x))) 0)
i.e. (\lambdax. succ (succ (succ x)))
            (succ (succ (succ 0)))
i.e. succ (succ (succ (succ (succ (succ 0)))))
```


Abstractions Returning Functions

Consider the following variant of g :

$$
\text { double }=\lambda f . \lambda y . f(f y)
$$

I.e., double is the function that, when applied to a function f, yields a function that, when applied to an argument y , yields f (f y).

The Pure Lambda-Calculus

As the preceding examples suggest, once we have λ-abstraction and application, we can throw away all the other language primitives and still have left a rich and powerful programming language.
In this language - the "pure lambda-calculus" - everything is a function.

- Variables always denote functions
- Functions always take other functions as parameters
- The result of a function is always a function

Formalities

Syntactic conventions

Since λ-calculus provides only one-argument functions, all multi-argument functions must be written in curried style.

The following conventions make the linear forms of terms easier to read and write:

- Application associates to the left

$$
\text { E.g., } t \text { u veans }(t u) v \text {, not } t \text { (} u \text { v) }
$$

- Bodies of λ - abstractions extend as far to the right as possible

$$
\begin{aligned}
& \text { E.g., } \lambda x . \lambda y . x \text { y means } \lambda x .(\lambda y . x y) \text {, not } \\
& \lambda x .(\lambda y . x) y
\end{aligned}
$$

Syntax

t : $:=$
x
$\lambda \mathrm{x} . \mathrm{t}$
t t

Terminology:

- terms in the pure λ-calculus are often called λ-terms
- terms of the form $\lambda \mathrm{x}$. t are called λ-abstractions or just abstractions

Scope

The λ-abstraction term $\lambda \mathrm{x}$.t binds the variable x .
The scope of this binding is the body t.
Occurrences of x inside t are said to be bound by the abstraction.
Occurrences of x that are not within the scope of an abstraction binding x are said to be free.
Test:

$$
\lambda \mathrm{x} \cdot \lambda \mathrm{y} \cdot \mathrm{x} \mathrm{y} \mathbf{z}
$$

Scope

The λ-abstraction term $\lambda \mathrm{x}$. t binds the variable x .
The scope of this binding is the body t.
Occurrences of x inside t are said to be bound by the abstraction.
Occurrences of x that are not within the scope of an abstraction binding x are said to be free.

Test:

$$
\begin{gathered}
\lambda x \cdot \lambda y \cdot x y y \\
\lambda x \cdot(\lambda y \cdot z y) y
\end{gathered}
$$

Operational Semantics

Computation rule:

$$
\left(\lambda \mathrm{x} . \mathrm{t}_{12}\right) \quad \mathrm{v}_{2} \longrightarrow\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}
$$

(E-AppABS)
Notation: $\left[x \mapsto v_{2}\right] t_{12}$ is "the term that results from substituting free occurrences of x in t_{12} with v_{12}."

Values

v ::=
$\lambda \mathrm{x} . \mathrm{t}$
values abstraction value

Operational Semantics

Computation rule:

$$
\left(\lambda \mathrm{x} \cdot \mathrm{t}_{12}\right) \mathrm{v}_{2} \longrightarrow\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12} \quad(\mathrm{E}-\mathrm{APPABS})
$$

Notation: $\left[x \mapsto v_{2}\right] t_{12}$ is "the term that results from substituting free occurrences of x in t_{12} with v_{12}."

Congruence rules:

$$
\begin{aligned}
& \frac{t_{1} \longrightarrow t_{1}^{\prime}}{t_{1} t_{2} \longrightarrow t_{1}^{\prime} t_{2}} \\
& \frac{t_{2} \longrightarrow t_{2}^{\prime}}{v_{1} t_{2} \longrightarrow v_{1} t_{2}^{\prime}}
\end{aligned}
$$

Terminology

A term of the form ($\lambda \mathrm{x} . \mathrm{t}$) v - that is, a λ-abstraction applied to a value - is called a redex (short for "reducible expression").

Alternative evaluation strategies

Strictly speaking, the language we have defined is called the pure, call-by-value lambda-calculus.

The evaluation strategy we have chosen - call by value - reflects standard conventions found in most mainstream languages.
Some other common ones:

- Call by name (cf. Haskell)
- Normal order (leftmost/outermost)
- Full (non-deterministic) beta-reduction

Classical Lambda Calculus

Full beta reduction

The classical lambda calculus allows full beta reduction.

- The argument of a β-reduction to be an arbitrary term, not just a value.
- Reduction may appear anywhere in a term.

Full beta reduction

The classical lambda calculus allows full beta reduction.

- The argument of a β-reduction to be an arbitrary term, not just a value.
- Reduction may appear anywhere in a term.

Computation rule:

$$
\left(\lambda \mathrm{x} . \mathrm{t}_{12}\right) \mathrm{t}_{2} \longrightarrow\left[\mathrm{x} \mapsto \mathrm{t}_{2}\right] \mathrm{t}_{12} \quad(\mathrm{E}-\mathrm{APPABS})
$$

Substitution revisited

Remember: $\left[x \mapsto v_{2}\right] t_{12}$ is "the term that results from substituting free occurrences of x in t_{12} with v_{12}."

This is trickier than it looks! For example:

$$
\begin{array}{ll}
& (\lambda \mathrm{x} \cdot(\lambda \mathrm{y} \cdot \mathrm{x})) \mathrm{y} \\
\longrightarrow \quad & {[\mathrm{x} \mapsto \mathrm{y}] \lambda \mathrm{y} \cdot \mathrm{x}} \\
= & ? ? ?
\end{array}
$$

Full beta reduction

The classical lambda calculus allows full beta reduction.

- The argument of a β-reduction to be an arbitrary term, not just a value.
- Reduction may appear anywhere in a term.

Computation rule:

$$
\left(\lambda \mathrm{x} . \mathrm{t}_{12}\right) \mathrm{t}_{2} \longrightarrow\left[\mathrm{x} \mapsto \mathrm{t}_{2}\right] \mathrm{t}_{12} \quad(\mathrm{E}-\mathrm{APPABS})
$$

Congruence rules:

$$
\begin{gather*}
\frac{t_{1} \longrightarrow t_{1}^{\prime}}{t_{1} t_{2} \longrightarrow t_{1}^{\prime} t_{2}} \\
\frac{t_{2} \longrightarrow t_{2}^{\prime}}{t_{1} t_{2} \longrightarrow t_{1} t_{2}^{\prime}} \\
\frac{t \longrightarrow t^{\prime}}{\lambda \mathrm{x} \cdot \mathrm{t} \longrightarrow \lambda \cdot \mathrm{t}^{\prime}} \tag{E-ABS}
\end{gather*}
$$

Substitution revisited

Remember: $\left[x \mapsto v_{2}\right] t_{12}$ is "the term that results from substituting free occurrences of x in t_{12} with v_{12}."

This is trickier than it looks! For example:

$$
\begin{aligned}
& (\lambda \mathrm{x} \cdot(\lambda \mathrm{y} \cdot \mathrm{x})) \mathrm{y} \\
\longrightarrow & {[\mathrm{x} \mapsto \mathrm{y}] \lambda \mathrm{y} \cdot \mathrm{x} } \\
= & ? ? ?
\end{aligned}
$$

Solution:
need to rename bound variables before performing the substitution.

$$
\begin{aligned}
& (\lambda \mathrm{x} \cdot(\lambda \mathrm{y} \cdot \mathrm{x})) \mathrm{y} \\
= & (\lambda \mathrm{x} \cdot(\lambda \mathrm{z} \cdot \mathrm{x})) \mathrm{y} \\
\longrightarrow & {[\mathrm{x} \mapsto \mathrm{y}] \lambda \mathrm{z} \cdot \mathrm{x} } \\
= & \lambda \mathrm{z} \cdot \mathrm{y}
\end{aligned}
$$

Alpha conversion

Renaming bound variables is formalized as α-conversion.
Conversion rule:

$$
\frac{\mathrm{y} \notin \mathrm{fv}(\mathrm{t})}{\lambda \mathrm{x} . \mathrm{t}={ }_{\alpha} \lambda \mathrm{y} \cdot[\mathrm{x} \mapsto \mathrm{y}] \mathrm{t}}
$$

Equivalence rules:

$$
\begin{aligned}
& \frac{t_{1}={ }_{\alpha} \mathrm{t}_{2}}{\mathrm{t}_{2}={ }_{\alpha} \mathrm{t}_{1}} \\
& \frac{\mathrm{t}_{1}={ }_{\alpha} \mathrm{t}_{2} \quad \mathrm{t}_{2}={ }_{\alpha} \mathrm{t}_{3}}{\mathrm{t}_{1}={ }_{\alpha} \mathrm{t}_{3}}(\alpha \text {-SYMM }) \\
& \hline
\end{aligned}(\alpha \text {-TRANS })
$$

Congruence rules: the usual ones.

Confluence

Full β-reduction makes it possible to have different reduction paths.

Q: Can a term evaluate to more than one normal form?
The answer is no; this is a consequence of the following
Theorem [Church-Rosser]
Let t, t_{1}, t_{2} be terms such that $t \longrightarrow{ }^{*} t_{1}$ and $t \longrightarrow{ }^{*} t_{2}$. Then there exists a term t_{3} such that $\mathrm{t}_{1} \longrightarrow{ }^{*} \mathrm{t}_{3}$ and $\mathrm{t}_{2} \longrightarrow{ }^{*} \mathrm{t}_{3}$.

Confluence

Full β-reduction makes it possible to have different reduction paths.

Q: Can a term evaluate to more than one normal form?

Programming in the Lambda-Calculus

Multiple arguments

Consider the function double, which returns a function as an argument.

$$
\text { double }=\lambda f . \lambda y . f(f y)
$$

This idiom - a λ-abstraction that does nothing but immediately yield another abstraction - is very common in the λ-calculus.
In general, $\lambda \mathrm{x} . \lambda \mathrm{y}$. t is a function that, given a value v for x , yields a function that, given a value u for y, yields t with v in place of x and u in place of y.
That is, $\lambda \mathrm{x}$. $\lambda \mathrm{y}$. t is a two-argument function.
(Recall the discussion of currying in OCaml.)

The "Church Booleans"

```
tru = \lambdat. \lambdaf. t
fls = \lambdat. \lambdaf.f
    =(\lambdat.\lambdaf.t) v w by definition
    \longrightarrow(\lambdaf. v) w
                                    reducing the underlined redex
    v
    reducing the underlined redex
    = (\lambdat.\lambdaf.f) v w by definition
    (\lambdaf. f) w
    reducing the underlined redex
    W
        reducing the underlined redex
```


Functions on Booleans

$$
\text { and }=\lambda \mathrm{b} \cdot \lambda \mathrm{c} \cdot \mathrm{~b} \mathrm{c} \mathrm{fl} \mathrm{~s}
$$

That is, and is a function that, given two boolean values v and w , returns w if v is tru and $f 1 s$ if v is $f 1 s$
Thus and v w yields tru if both v and w are tru and $f 1 s$ if either v or w is fl s .

Pairs

```
pair = \lambdaf.\lambdas.\lambdab. b f s
fst = \lambdap. p tru
snd = \lambdap. p fls
```

That is, pair $v \mathrm{w}$ is a function that, when applied to a boolean value b, applies b to v and w.
By the definition of booleans, this application yields v if b is tru and w if b is $f l s$, so the first and second projection functions fst and snd can be implemented simply by supplying the appropriate boolean.

Church numerals

Idea: represent the number n by a function that "repeats some action n times."

```
\(\mathbf{c}_{0}=\lambda \mathbf{s} \cdot \lambda \mathbf{z} \cdot \mathbf{z}\)
\(\mathbf{c}_{1}=\lambda \mathbf{s} . \lambda \mathbf{z} . \mathbf{s} \mathbf{z}\)
\(\mathrm{c}_{2}=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{s} \mathbf{z})\)
\(\mathrm{c}_{3}=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{s}(\mathrm{s} z)\)
```

That is, each number n is represented by a term c_{n} that takes two arguments, s and z (for "successor" and "zero"), and applies s, n times, to z.

Example

Functions on Church Numerals

Successor:

Functions on Church Numerals

Successor:

```
scc = \n. \lambdas. \lambdaz. s (n s z)
```


Functions on Church Numerals

Successor:

$\operatorname{scc}=\lambda \mathrm{n} . \lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{n} \mathrm{s} \mathbf{z})$
Addition:
plus $=\lambda m . \lambda n \cdot \lambda s . \lambda z . m s(n s z)$

Functions on Church Numerals
Successor:
$\operatorname{scc}=\lambda \mathrm{n} . \lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{n} \mathrm{s} z)$
Addition:

Functions on Church Numerals
Successor:
$\mathrm{scc}=\lambda \mathrm{n} . \lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{n} \mathrm{s} \mathbf{z})$
Addition:
plus $=\lambda m . \lambda n . \lambda s . \lambda z . m s(n s z)$
Multiplication:

Functions on Church Numerals

Successor:

$$
\operatorname{scc}=\lambda n . \lambda s . \lambda z . s(n s z)
$$

Addition:

```
plus = \lambdam. \lambdan. \lambdas. \lambdaz. m s (n s z)
```

Multiplication:

```
times = \lambdam. \lambdan. m(plus n) co
```


Functions on Church Numerals

Successor:
$\mathrm{scc}=\lambda \mathrm{n} . \lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{n} \mathrm{s} z)$
Addition:

```
plus = \lambdam. \lambdan. \lambdas. \lambdaz. m s (n s z)
```

Multiplication:

```
times = \lambdam. \lambdan. m(plus n) co
```

Zero test:

Functions on Church Numerals

Successor:

$\mathrm{scc}=\lambda \mathrm{n} . \lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{n} \mathrm{s} \quad \mathrm{z})$
Addition:
plus $=\lambda m . \lambda n . \lambda s . \lambda z . m s(n s z)$
Multiplication:
times $=\lambda \mathrm{m} . \lambda \mathrm{n} . \mathrm{m}($ plus n$) \mathrm{c}_{0}$
Zero test:
iszro $=\lambda m . m(\lambda x . f l s)$ tru

Predecessor

```
zz = pair co co
ss = \lambdap. pair (snd p) (scc (snd p))
prd = \lambdam. fst (m ss zz)
```


Normal forms

Recall:

- A normal form is a term that cannot take an evaluation step.
- A stuck term is a normal form that is not a value.

Are there any stuck terms in the pure λ-calculus?
Does every term evaluate to a normal form?

Normal forms

Recall:

- A normal form is a term that cannot take an evaluation step.
- A stuck term is a normal form that is not a value.

Are there any stuck terms in the pure λ-calculus?

Divergence

$$
\text { omega }=(\lambda \mathrm{x} \cdot \mathrm{x} \mathrm{x})(\lambda \mathrm{x} \cdot \mathrm{x} \mathrm{x})
$$

Note that omega evaluates in one step to itself!
So evaluation of omega never reaches a normal form: it diverges.

Divergence

$$
\text { omega }=(\lambda x . x \operatorname{x})(\lambda x \cdot x \operatorname{x})
$$

Note that omega evaluates in one step to itself! So evaluation of omega never reaches a normal form: it diverges.

Being able to write a divergent computation does not seem very useful in itself. However, there are variants of omega that are very useful...

Iterated Application

Suppose f is some λ-abstraction, and consider the following term:

Recursion in the Lambda-Calculus

Iterated Application

Suppose f is some λ-abstraction, and consider the following term:

```
Yf}=(\lambdax.f(x x))(\lambdax.f (x x))
```

Now the "pattern of divergence" becomes more interesting:

```
                                    Yf
                                    =
    (\lambdax.f (x x)) (\lambdax.f (x x))
    f ((\lambdax.f (x x)) (\lambdax.f (x x))
f (f ((\lambdax.f (x x)) (\lambdax.f (x x )) )
f (f (f ((\lambdax.f (x x)) (\lambdax.f (x x )) ))
```

Y_{f} is still not very useful, since (like omega), all it does is diverge.
Is there any way we could "slow it down"?

A delayed variant of omega

Here is a variant of omega in which the delay and divergence are a bit more tightly intertwined:
omegav =

$$
\lambda y \cdot(\lambda x \cdot(\lambda y \cdot x \mathrm{x} y))(\lambda \mathrm{x} \cdot(\lambda \mathrm{y} \cdot \mathrm{x} \mathrm{x} \mathrm{y})) \mathrm{y}
$$

Note that omegav is a normal form. However, if we apply it to any argument v , it diverges:
omegav V
($\lambda \mathrm{y} \cdot(\lambda \mathrm{x} \cdot(\lambda \mathrm{y} \cdot \mathrm{x} \mathrm{x} \mathrm{y}))(\lambda \mathrm{x} \cdot(\lambda \mathrm{y} \cdot \mathrm{x} \mathrm{x} y)) \mathrm{y}) \mathrm{v}$
($\lambda \mathrm{x} \cdot(\lambda \mathrm{y} \cdot \mathrm{x} x \mathrm{y}))(\lambda \mathrm{x} \cdot(\lambda \mathrm{y} \cdot \mathrm{x} \mathrm{x} y)) \mathrm{v}$
$(\lambda y .(\lambda x \cdot(\lambda y \cdot x \quad x y))(\lambda x \cdot(\lambda y \cdot x \quad x y)) y) v$ $=$
omegav v

Delaying divergence

$$
\text { poisonpill }=\lambda y . \text { omega }
$$

Note that poisonpill is a value - it it will only diverge when we actually apply it to an argument. This means that we can safely pass it as an argument to other functions, return it as a result from functions, etc.

Another delayed variant

Suppose f is a function. Define
$Z_{f}=\lambda y \cdot(\lambda x \cdot f(\lambda y \cdot x \quad x y))(\lambda x \cdot f(\lambda y \cdot x \quad x y)) y$

This term combines the "added f " from Y_{f} with the "delayed divergence" of omegav.

If we now apply Z_{f} to an argument v, something interesting happens:

$$
\begin{gathered}
\mathrm{Z}_{f} \mathrm{v} \\
=
\end{gathered}
$$

$\underline{(\lambda y \cdot(\lambda x \cdot f(\lambda y \cdot x \quad x y))(\lambda x \cdot f(\lambda y \cdot x \quad y)) y) v}$ $\underline{(\lambda x \cdot f(\lambda y \cdot x x y))(\lambda x \cdot f(\lambda y \cdot x x y))} v$ $f(\lambda y .(\lambda x . f(\lambda y . x \quad x y))(\lambda x . f(\lambda y . x x y)) y) v$

$$
f Z_{f} \mathrm{v}
$$

Since Z_{f} and v are both values, the next computation step will be the reduction of $f Z_{f}$ - that is, before we "diverge," f gets to do some computation.
Now we are getting somewhere.

Recursion

Let

$$
\begin{aligned}
& \mathrm{f}=\quad \lambda \mathrm{fct} . \\
& \quad \lambda \mathrm{n} . \\
& \quad \text { if } \mathrm{n}=0 \text { then } 1 \\
& \quad \text { else } \mathrm{n} *(\text { fct }(\text { pred } \mathrm{n}))
\end{aligned}
$$

f looks just the ordinary factorial function, except that, in place of a recursive call in the last time, it calls the function fct, which is passed as a parameter.
N.b.: for brevity, this example uses "real" numbers and booleans, infix syntax, etc. It can easily be translated into the pure lambda-calculus (using Church numerals, etc.).

We can use Z to "tie the knot" in the definition of f and obtain a real recursive factorial function:

$$
\begin{aligned}
& \mathrm{Z}_{f} 3 \\
& \xrightarrow[Z_{f}]{ }{ }^{*} \\
& Z_{f} \\
& \text { (} \left.\lambda \text { fct. } \lambda_{n}\right) Z_{f} 3 \\
& \text { if } 3=0 \text { then } 1 \text { else } 3 *\left(Z_{f}(\text { pred } 3)\right) \\
& \longrightarrow \\
& \left.3 *\left(Z_{f}(\text { pred } 3)\right)\right) \\
& \left.3 \text { * (} Z_{f} 2\right) \\
& 3 \text { * (f } \mathrm{Z}_{f} 2 \text {) }
\end{aligned}
$$

A Generic Z

If we define

$$
\mathrm{Z}=\lambda \mathrm{f} . \mathrm{Z}_{f}
$$

i.e.,

$$
\mathrm{Z}=
$$

$$
\lambda f \cdot \lambda y \cdot(\lambda x \cdot f(\lambda y \cdot x x y))(\lambda x \cdot f(\lambda y \cdot x x y)) y
$$

then we can obtain the behavior of Z_{f} for any f we like, simply by applying Z to f.

$$
\mathrm{Z} f \quad \longrightarrow \quad \mathrm{Z}_{f}
$$

For example:

$$
\text { fact }=\mathrm{Z}(\lambda f c t
$$

λn.
if $\mathrm{n}=0$ then 1 else n * (fct (pred n)))

Technical Note

The term Z here is essentially the same as the fix discussed the book.

$$
\begin{aligned}
& \mathrm{Z}= \\
& \quad \lambda \mathrm{f} \cdot \lambda \mathrm{y} \cdot(\lambda \mathrm{x} \cdot \mathrm{f}(\lambda \mathrm{y} \cdot \mathrm{x} x \mathrm{y}))(\lambda \mathrm{x} \cdot \mathrm{f}(\lambda \mathrm{y} \cdot \mathrm{x} x \mathrm{y})) \mathrm{y} \\
& \mathrm{fix}= \\
& \quad \lambda \mathrm{f} \cdot(\lambda \mathrm{x} \cdot \mathrm{f}(\lambda \mathrm{y} \cdot \mathrm{x} x \mathrm{y}))(\lambda \mathrm{x} \cdot \mathrm{f}(\lambda \mathrm{y} \cdot \mathrm{x} x \mathrm{y}))
\end{aligned}
$$

Z is hopefully slightly easier to understand, since it has the property that $\mathrm{Z} f \mathrm{v} \longrightarrow{ }^{*} \mathrm{f}$ (Z f) V , which fix does not (quite) share.

