
Type Systems
Winter Semester 2006

Week 3

November 8

November 1, 2006 - version 1.0

Review (and more details)

Simple Arithmetic Expressions

The set T of terms is defined by the following abstract grammar:

t ::= terms
true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

Inference Rule Notation

More explicitly: The set T is the smallest set closed under the
following rules.

true ∈ T false ∈ T 0 ∈ T

t1 ∈ T
succ t1 ∈ T

t1 ∈ T
pred t1 ∈ T

t1 ∈ T
iszero t1 ∈ T

t1 ∈ T t2 ∈ T t3 ∈ T
if t1 then t2 else t3 ∈ T

Generating Functions

Each of these rules can be thought of as a generating function
that, given some elements from T , generates some other element
of T . Saying that T is closed under these rules means that T
cannot be made any bigger using these generating functions — it
already contains everything “justified by its members.”

true ∈ T false ∈ T 0 ∈ T

t1 ∈ T
succ t1 ∈ T

t1 ∈ T
pred t1 ∈ T

t1 ∈ T
iszero t1 ∈ T

t1 ∈ T t2 ∈ T t3 ∈ T
if t1 then t2 else t3 ∈ T

Let’s write these generating functions explicitly.

F1(U) = {true}
F2(U) = {false}
F3(U) = {0}
F4(U) = {succ t1 | t1 ∈ U}
F5(U) = {pred t1 | t1 ∈ U}
F6(U) = {iszero t1 | t1 ∈ U}
F7(U) = {if t1 then t2 else t3 | t1, t2, t3 ∈ U}

Each one takes a set of terms U as input and produces a set of
“terms justified by U” as output.

If we now define a generating function for the whole set of
inference rules (by combining the generating functions for the
individual rules),

F (U) = F1(U)∪F2(U)∪F3(U)∪F4(U)∪F5(U)∪F6(U)∪F7(U)

then we can restate the previous definition of the set of terms T
like this:

Definition:

I A set U is said to be “closed under F” (or “F-closed”) if
F (U) ⊆ U.

I The set of terms T is the smallest F -closed set.
(I.e., if O is another set such that F (O) ⊆ O, then T ⊆ O.)

Our alternate definition of the set of terms can also be stated
using the generating function F :

S0 = ∅
Si+1 = F (Si)

S =
⋃

i Si

Compare this definition of S with the one we saw last time:

S0 = ∅
Si+1 = {true, false, 0}

∪ {succ t1, pred t1, iszero t1 | t1 ∈ Si}
∪ {if t1 then t2 else t3 | t1, t2, t3 ∈ Si}

S =
⋃

i Si

We have “pulled out” F and given it a name.

Note that our two definitions of terms characterize the same set
from different directions:

I “from above,” as the intersection of all F -closed sets;

I “from below,” as the limit (union) of a series of sets that start
from ∅ and get “closer and closer to being F -closed.”

Proposition 3.2.6 in the book shows that these two definitions
actually define the same set.

Warning: Hard hats on for the next slide!

Structural Induction

The principle of structural induction on terms can also be re-stated
using generating functions:

Suppose T is the smallest F -closed set.

If, for each set U,
from the assumption “P(u) holds for every u ∈ U”
we can show “P(v) holds for any v ∈ F (U),”

then P(t) holds for all t ∈ T.

Why?

Structural Induction

The principle of structural induction on terms can also be re-stated
using generating functions:

Suppose T is the smallest F -closed set.

If, for each set U,
from the assumption “P(u) holds for every u ∈ U”
we can show “P(v) holds for any v ∈ F (U),”

then P(t) holds for all t ∈ T.

Why?

Structural Induction

Why? Because:

I We assumed that T was the smallest F -closed set, i.e., that
T ⊆ O for any other F -closed set O.

I But showing

for each set U,
given P(u) for all u ∈ U
we can show P(v) for all v ∈ F (U)

amounts to showing that “the set of all terms satisfying P”
(call it O) is itself an F -closed set.

I Since T ⊆ O, every element of T satisfies P.

Structural Induction

Compare this with the structural induction principle for terms from
last lecture:

If, for each term s,
given P(r) for all immediate subterms r of s
we can show P(s),

then P(t) holds for all t.

Recall, from the definition of S, it is clear that, if a term t is in Si ,
then all of its immediate subterms must be in Si−1, i.e., they must
have strictly smaller depths. Therefore:

If, for each term s,
given P(r) for all immediate subterms r of s
we can show P(s),

then P(t) holds for all t.

Slightly more explicit proof:

I Assume that for each term s, given P(r) for all immediate
subterms of s, we can show P(s).

I Then show, by induction on i , that P(t) holds for all terms t
with depth i .

I Therefore, P(t) holds for all t.

Operational Semantics

Abstract Machines

An abstract machine consists of:

I a set of states

I a transition relation on states, written −→

For the simple languages we are considering at the moment, the
term being evaluated is the whole state of the abstract machine.

Operational semantics for Booleans

Syntax of terms and values

t ::= terms
true constant true
false constant false
if t then t else t conditional

v ::= values
true true value
false false value

Evaluation Relation on Booleans

The evaluation relation t −→ t′ is the smallest relation closed
under the following rules:

if true then t2 else t3 −→ t2 (E-IfTrue)

if false then t2 else t3 −→ t3 (E-IfFalse)

t1 −→ t′1
if t1 then t2 else t3 −→ if t′1 then t2 else t3

(E-If)

Digression

Suppose we wanted to change our evaluation strategy so that the
then and else branches of an if get evaluated (in that order)
before the guard. How would we need to change the rules?

Suppose, moreover, that if the evaluation of the then and else
branches leads to the same value, we want to immediately produce
that value (“short-circuiting” the evaluation of the guard). How
would we need to change the rules?

Of the rules we just invented, which are computation rules and
which are congruence rules?

Digression

Suppose we wanted to change our evaluation strategy so that the
then and else branches of an if get evaluated (in that order)
before the guard. How would we need to change the rules?

Suppose, moreover, that if the evaluation of the then and else
branches leads to the same value, we want to immediately produce
that value (“short-circuiting” the evaluation of the guard). How
would we need to change the rules?

Of the rules we just invented, which are computation rules and
which are congruence rules?

Digression

Suppose we wanted to change our evaluation strategy so that the
then and else branches of an if get evaluated (in that order)
before the guard. How would we need to change the rules?

Suppose, moreover, that if the evaluation of the then and else
branches leads to the same value, we want to immediately produce
that value (“short-circuiting” the evaluation of the guard). How
would we need to change the rules?

Of the rules we just invented, which are computation rules and
which are congruence rules?

Evaluation, more explicitly

−→ is the smallest two-place relation closed under the following
rules:

((if true then t2 else t3), t2) ∈ −→

((if false then t2 else t3), t3) ∈ −→

(t1, t′1) ∈ −→
((if t1 then t2 else t3), (if t′1 then t2 else t3)) ∈ −→

Even more explicitly...

What is the generating function corresponding to these rules?

(exercise)

Reasoning about Evaluation

Derivations

We can record the “justification” for a particular pair of terms that
are in the evaluation relation in the form of a tree.

(on the board)

Terminology:

I These trees are called derivation trees (or just derivations).

I The final statement in a derivation is its conclusion.

I We say that the derivation is a witness for its conclusion (or a
proof of its conclusion) — it records all the reasoning steps
that justify the conclusion.

Observation

Lemma: Suppose we are given a derivation tree D witnessing the
pair (t, t′) in the evaluation relation. Then either

1. the final rule used in D is E-IfTrue and we have
t = if true then t2 else t3 and t′ = t2, for some t2

and t3, or

2. the final rule used in D is E-IfFalse and we have
t = if false then t2 else t3 and t′ = t3, for some t2

and t3, or

3. the final rule used in D is E-If and we have
t = if t1 then t2 else t3 and
t′ = if t′1 then t2 else t3, for some t1, t′1, t2, and t3;
moreover, the immediate subderivation of D witnesses
(t1, t′1) ∈−→.

Induction on Derivations

We can now write proofs about evaluation “by induction on
derivation trees.”

Given an arbitrary derivation D with conclusion t −→ t′, we
assume the desired result for its immediate sub-derivation (if any)
and proceed by a case analysis (using the previous lemma) of the
final evaluation rule used in constructing the derivation tree.

E.g....

Induction on Derivations — Example

Theorem: If t −→ t′, i.e., if (t, t′) ∈−→, then size(t) > size(t′).
Proof: By induction on a derivation D of t −→ t′.

1. Suppose the final rule used in D is E-IfTrue, with
t = if true then t2 else t3 and t′ = t2. Then the
result is immediate from the definition of size.

2. Suppose the final rule used in D is E-IfFalse, with
t = if false then t2 else t3 and t′ = t3. Then the
result is again immediate from the definition of size.

3. Suppose the final rule used in D is E-If, with
t = if t1 then t2 else t3 and
t′ = if t′1 then t2 else t3, where (t1, t′1) ∈−→ is
witnessed by a derivation D1. By the induction hypothesis,
size(t1) > size(t′1). But then, by the definition of size, we
have size(t) > size(t′).

Normal forms

A normal form is a term that cannot be evaluated any further —
i.e., a term t is a normal form (or “is in normal form”) if there is
no t′ such that t −→ t′.

A normal form is a state where the abstract machine is halted —
i.e., it can be regarded as a “result” of evaluation.

Recall that we intended the set of values (the boolean constants
true and false) to be exactly the possible “results of evaluation.”
Did we get this definition right?

Normal forms

A normal form is a term that cannot be evaluated any further —
i.e., a term t is a normal form (or “is in normal form”) if there is
no t′ such that t −→ t′.

A normal form is a state where the abstract machine is halted —
i.e., it can be regarded as a “result” of evaluation.

Recall that we intended the set of values (the boolean constants
true and false) to be exactly the possible “results of evaluation.”
Did we get this definition right?

Values = normal forms

Theorem: A term t is a value iff it is in normal form.
Proof:
The =⇒ direction is immediate from the definition of the
evaluation relation.

For the ⇐= direction, it is convenient to prove the contrapositive:
If t is not a value, then it is not a normal form. The argument
goes by induction on t.
Note, first, that t must have the form if t1 then t2 else t3

(otherwise it would be a value). If t1 is true or false, then rule
E-IfTrue or E-IfFalse applies to t, and we are done.
Otherwise, t1 is not a value and so, by the induction hypothesis,
there is some t′1 such that t1 −→ t′1. But then rule E-If yields

if t1 then t2 else t3 −→ if t′1 then t2 else t3

i.e., t is not in normal form.

Values = normal forms

Theorem: A term t is a value iff it is in normal form.
Proof:
The =⇒ direction is immediate from the definition of the
evaluation relation.
For the ⇐= direction,

it is convenient to prove the contrapositive:
If t is not a value, then it is not a normal form. The argument
goes by induction on t.
Note, first, that t must have the form if t1 then t2 else t3

(otherwise it would be a value). If t1 is true or false, then rule
E-IfTrue or E-IfFalse applies to t, and we are done.
Otherwise, t1 is not a value and so, by the induction hypothesis,
there is some t′1 such that t1 −→ t′1. But then rule E-If yields

if t1 then t2 else t3 −→ if t′1 then t2 else t3

i.e., t is not in normal form.

Values = normal forms

Theorem: A term t is a value iff it is in normal form.
Proof:
The =⇒ direction is immediate from the definition of the
evaluation relation.
For the ⇐= direction, it is convenient to prove the contrapositive:
If t is not a value, then it is not a normal form.

The argument
goes by induction on t.
Note, first, that t must have the form if t1 then t2 else t3

(otherwise it would be a value). If t1 is true or false, then rule
E-IfTrue or E-IfFalse applies to t, and we are done.
Otherwise, t1 is not a value and so, by the induction hypothesis,
there is some t′1 such that t1 −→ t′1. But then rule E-If yields

if t1 then t2 else t3 −→ if t′1 then t2 else t3

i.e., t is not in normal form.

Values = normal forms

Theorem: A term t is a value iff it is in normal form.
Proof:
The =⇒ direction is immediate from the definition of the
evaluation relation.
For the ⇐= direction, it is convenient to prove the contrapositive:
If t is not a value, then it is not a normal form. The argument
goes by induction on t.
Note, first, that t must have the form if t1 then t2 else t3

(otherwise it would be a value). If t1 is true or false, then rule
E-IfTrue or E-IfFalse applies to t, and we are done.
Otherwise, t1 is not a value and so, by the induction hypothesis,
there is some t′1 such that t1 −→ t′1. But then rule E-If yields

if t1 then t2 else t3 −→ if t′1 then t2 else t3

i.e., t is not in normal form.

Numbers

New syntactic forms

t ::= ... terms
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

v ::= ... values
nv numeric value

nv ::= numeric values
0 zero value
succ nv successor value

New evaluation rules t −→ t′

t1 −→ t′1
succ t1 −→ succ t′1

(E-Succ)

pred 0 −→ 0 (E-PredZero)

pred (succ nv1) −→ nv1 (E-PredSucc)

t1 −→ t′1
pred t1 −→ pred t′1

(E-Pred)

iszero 0 −→ true (E-IszeroZero)

iszero (succ nv1) −→ false (E-IszeroSucc)

t1 −→ t′1
iszero t1 −→ iszero t′1

(E-IsZero)

Values are normal forms

Our observation a few slides ago that all values are in normal form
still holds for the extended language.

Is the converse true? I.e., is every normal form a value?

No: some terms are stuck.

Formally, a stuck term is one that is a normal form but not a value.
What are some examples?

Stuck terms model run-time errors.

Values are normal forms, but we have stuck terms

Our observation a few slides ago that all values are in normal form
still holds for the extended language.

Is the converse true? I.e., is every normal form a value?
No: some terms are stuck.

Formally, a stuck term is one that is a normal form but not a value.
What are some examples?

Stuck terms model run-time errors.

Multi-step evaluation.

The multi-step evaluation relation, −→∗, is the reflexive, transitive
closure of single-step evaluation.

I.e., it is the smallest relation closed under the following rules:

t −→ t′

t −→∗ t′

t −→∗ t

t −→∗ t′ t′ −→∗ t′′

t −→∗ t′′

Termination of evaluation

Theorem: For every t there is some normal form t′ such that
t −→∗ t′.
Proof:

I First, recall that single-step evaluation strictly reduces the size
of the term:

if t −→ t′, then size(t) > size(t′)

I Now, assume (for a contradiction) that

t0, t1, t2, t3, t4, . . .

is an infinite-length sequence such that

t0 −→ t1 −→ t2 −→ t3 −→ t4 −→ · · · .

I Then

size(t0) > size(t1) > size(t2) > size(t3) > . . .

I But such a sequence cannot exist — contradiction!

Termination of evaluation

Theorem: For every t there is some normal form t′ such that
t −→∗ t′.
Proof:

I First, recall that single-step evaluation strictly reduces the size
of the term:

if t −→ t′, then size(t) > size(t′)

I Now, assume (for a contradiction) that

t0, t1, t2, t3, t4, . . .

is an infinite-length sequence such that

t0 −→ t1 −→ t2 −→ t3 −→ t4 −→ · · · .

I Then

size(t0) > size(t1) > size(t2) > size(t3) > . . .

I But such a sequence cannot exist — contradiction!

Termination Proofs

Most termination proofs have the same basic form:

Theorem: The relation R ⊆ X × X is terminating —
i.e., there are no infinite sequences x0, x1, x2, etc. such
that (xi , xi+1) ∈ R for each i .
Proof:

1. Choose
I a well-founded set (W , <) — i.e., a set W with a

partial order < such that there are no infinite
descending chains w0 > w1 > w2 > . . . in W

I a function f from X to W

2. Show f (x) > f (y) for all (x , y) ∈ R
3. Conclude that there are no infinite sequences x0, x1,

x2, etc. such that (xi , xi+1) ∈ R for each i , since, if
there were, we could construct an infinite descending
chain in W .

	Review (and more details)
	Operational Semantics
	Reasoning about Evaluation

