
1

Type Systems

Lecture 9 Dec. 15th, 2004
Sebastian Maneth

http://lampwww.epfl.ch/teaching/typeSystems/2004

Today Parametric Polymorphism

1. Recall Let-Polymorphism

2. System F

3. Properties of System F

4. System F-sub

5. Properties of F-sub

1. Recall Let-Polymorphism

Simple form of polymorphism

Introduced by [Milner 1978] in ML

also known as Damas-Milner polymorphism

in ML, basis of powerful generic libraries
(e.g., lists, arrays, trees, hash tables, …)

In simply-typed lambda-calculus, we can leave out ALL type annotations:

insert new type variables
do type reconstruction (using unification)

In this way, changing the let-rule, we obtain

Let-Polymorphism

1. Recall Let-Polymorphism
Γ ` t1:T1 Γ ` [x t1]t2:T2

Γ ` let x=t1 in t2 :T2

let double = λx.λy. x(x(y)) in
{

let a = double (λx:int. x+2) 2 in {
let b = double (λx:bool. x) false in {..}
}

}

CAN be typed now!! Because the new let rule creates two copies
of double, and the rule for abstraction assigns a different type variable
to each one.

2

1. Recall Let-Polymorphism

Limits of Let-Polymorphism?

Only let-bound variables can be used polymorphically!
NOT lambda-bound variables

Ex.: let f = λg. … g(1) … g(true) …
in { f(λx.x) }

is not typable: when typechecking the def. of f, g has type X (fresh)
Which is then constrained by X = int Y and X = bool Z.

Functions cannot take polymorphic functions as parameters.

(= no polymorphic arguments!)

2. System F
Aka polymorphic lambda-calculus or second-order lambda-calculus.

do lambda-abstraction over type variables,
define functions over types

Invented by

Girard (1972) motivated by logics

Reynolds (1974) motivated by programming.

2. System F
Aka polymorphic lambda-calculus or second-order lambda-calculus.

Add (universal) quantification over TYPEs!
Straightforward extension of simply typed lambda-calculus by
two new constructs:

Type Abstraction: λX. t
Type Application: t [T]

For example, the polymorphic identity function

id = λX. λx:X. x

2. System F
Aka polymorphic lambda-calculus or second-order lambda-calculus.

Add (universal) quantification over TYPEs!
Straightforward extension of simply typed lambda-calculus by
two new constructs:

Type Abstraction: λX. t
Type Application: t [T]

For example, the polymorphic identity function

id = λX. λx:X. x

can be applied to Nat by writing id [Nat]. The result is

[X/Nat](λx:X. x) = λx:Nat.x

3

2. System F
What is the type of

id = λX. λx:X. x

If applied to a type T, id yields function of type T T.

2. System F
What is the type of

id = λX. λx:X. x

If applied to a type T, id yields function of type T T.

Therefore denote its type by: ∀X.X X

Γ, X ` t2:T2

Γ ` λX.t2 : ∀X.T2

Γ ` t1 : ∀X.T12

Γ ` t1[T2] : [X/T2]T12

Typing rules for type abstraction and type application:

2. System F
Evaluation, like simply typed lambda (3 rules), plus two new rules:

t1 t2’

t1[T2] t1’[T2]
(λX.t12)[T2] [X/T2]t12

Values (in the pure system) are

λx:T.t abstraction value
λX.t type abstraction value

Contexts contain x:T term variable binding
and X type variable binding

2. System F
Examples.

Polymorphic identity function: id = λX.λx:X. x

Apply it:

id [Nat] 5
= (λX.λx:X. x) [Nat] 5

[X/Nat](λx:X. x) 5
(λx:Nat. x) 5
[x/5](x)
5

As we saw, the type of id is ∀X. X X.

Can you find a function different from id, with the SAME TYPE??

4

2. System F
Examples.

Polymorphic doubling function:

double = λX. λf:X X. λa:X. f (f a)

double [Nat] (λx:Nat. succ(succ(x))) 3
7

quadruple = λX. double [X X] (double [X])

What’s the type of quadruple?

2. System F
Examples.

In simply typed lambda-calculus

omega = (λx.x x) (λx. x x)

canNOT be typed!

Neither can the self-application fragment (λx.x x)
In System-F we CAN type it:

self = λx: (∀X. X X). x [∀X. X X] x

self: (∀X.X X) (∀X.X X)

2. System F
Examples.

In simply typed lambda-calculus

omega = (λx.x x) (λx. x x)

canNOT be typed!

Neither can the self-application fragment (λx.x x)
In System-F we CAN type it:

self = λx: (∀X. X X). x [∀X. X X] x

self: (∀X.X X) (∀X.X X)

Apply self to some function; e.g., to (λY.λy:Y. y)

Polym. Fu’s are “first class citizen”

2. System F
Main advantage of polymorphism:

many things need not be built into the language, but
can be moved into libraries

Example. Lists.

Before:

For a type T: List T describes finite-length lists of elements from T.

New syntactic forms: nil[T]
cons[T] t1 t2
isnil[T] t
head[T] t
tail[T] t

5

2. System F
Main advantage of polymorphism:

many things need not be built into the language, but
can be moved into libraries

Example. Lists.

Now:

List X describes finite-length lists of elements of type X.

New syntactic forms: nil: ∀X. List X
cons: ∀X. X List X List X
isnil: ∀X. List X Bool
head: ∀X. List X X
tail: ∀X. List X List X

2. System F
Now we can build a library of polymorphic operations on lists.
For example, a polymorphic map function.

map = λX.λY.
λf:X Y.
(fix (λm:List X List Y.

λl:List X.
if isnil[X] l then nil[Y]

else cons[Y](f (head[X] l))
(m (tail[X] l))))

What is the type of map?

2. System F
Now we can build a library of polymorphic operations on lists.
For example, a polymorphic map function.

map = λX.λY.
λf:X Y.
(fix (λm:List X List Y.

λl:List X.
if isnil[X] l then nil[Y]

else cons[Y](f (head[X] l))
(m (tail[X] l))))

What is the type of map?

l = cons[Nat] 4 (cons[Nat] 3 (cons[Nat] 2 (nil[Nat])))

head[Nat](map[Nat][Nat] (λx:Nat. succ x) l)
5

3. Properties of System F

System F is impredicative:

Polymorphic types are universally quantified over the
universe of ALL types. This includes polymorphic types themselves!

Polymorphic types are “1st class” citizens in the world of types

E.g. (λf: (∀X.X X). f) id

ML (let) – polymorphims is predicative:

Polymorphic types are 2nd class. Arguments do not have
polymorphic types! (prenex polymorphism)

E.g. (fn f => fn x => f x) id 3

6

3. Properties of System F

System F is impredicative:

Polymorphic types are universally quantified over the
universe of ALL types. This includes polymorphic types themselves!

Polymorphic types are “1st class” citizens in the world of types

E.g. (λf: (∀X.X X). f) id

ML (let) – polymorphims is predicative:

Polymorphic types are 2nd class. Arguments do not have
polymorphic types! prenex polymorphism

E.g. (fn f => fn x => f x) id 3

Type variables range only over
quantifier-free types (monotypes)

Quantified types (polytypes, or
type schemes) not allowed on left of arrow

3. Properties of System F

Parametricity
Evaluation of polymorphic applications does not depend
on the type that is supplied!

There is exactly one function of type ∀X.X X
(namely, the identity)

There are exactly two functions of type ∀X.X X X
which have different behavior.
Namely, λX.λa:X.λb:X. a
and λX.λa:X.λb:X. b

These do not (and cannot) alter their behavior depending on X!

3. Properties of System F
Parametricity
Evaluation of polymorphic applications does not depend
on the type that is supplied!

Nevertheless, we defined a type-passing semantics:

(λX.t12)[T2] [X/T2]t12

Why do this,
if eval. does not depend on it?

type-erasure semantics:

After the typechecking phase, all types are erased!

Erasure and Type Reconstruction
erase(x) = x
erase(λx:T.t) = λx.erase(t)
erase(t t’) = erase(t) erase(t’)
erase(λX.t) = erase(t)
erase(t [T]) = erase(t)

Theorem. (Wells, 1994): Let u be a closed term. It is undecidable,
whether there is a well-typed system-F-term t with erase(t)=u.

Type Reconstruction for system F is not possible!

7

Erasure and Type Reconstruction

perase(x) = x
perase(λx:T.t) = λx:T.perase(t)
perase(t t’) = perase(t) perase(t’)
perase(λX.t) = λX.perase(t)
perase(t [T]) = perase(t) []

Theorem. (Boehm, 1989): Let u be a closed term. It is undecidable,
whether there is a well-typed system-F-term t with perase(t)=u.

Even if we leave intact all typing annotations, except the
arguments to type applications:

Then Type Reconstruction is still not possible!

Erasure and Evaluation
erase(x) = x
erase(λx:T.t) = λx.erase(t)
erase(t t’) = erase(t) erase(t’)
erase(λX.t) = erase(t)
erase(t [T]) = erase(t’)

We claimed that if t is well-typed, then t and erase(t) evaluate
to the same.

Is this also true in the presence of side effects??

What about

let f = (λX.error) in 0

Erasure and Evaluation
erase(x) = x
erase(λx:T.t) = λx.erase(t)
erase(t t’) = erase(t) erase(t’)
erase(λX.t) = λ_.erase(t)
erase(t [T]) = erase(t’) dummyv

We claimed that if t is well-typed, then t and erase(t) evaluate
to the same.

Is this also true in the presence of side effects??

NO! --- but can be fixed easily.

3. Properties of System F
Uniqueness
Every well-typed System-F-term has exactly one type.

Preservation
If t ` t:T and t t’ , then Γ ` t’:T.

Progress
If t is a closed and well-typed term, then either
t is a value, or
t t’ for some term t’.

Proofs: straightforward induction on the structure of terms.

8

3. Properties of System F
Normalization
Every well-typed System-F-term t is normalizing, i.e.,

∃t’: t * t’

Proof: very hard (Girard’s PhD thesis, 1972)
later simplified to about 5 pages

Surprising: normalization holds even though MANY things can be
coded in System F!

Can the (erased) term (λx.x x)(λx.x x) be typed in System F?

3. Properties of System F
Normalization
Every well-typed System-F-term t is normalizing, i.e.,

∃t’: t * t’

Proof: very hard (Girard’s PhD thesis, 1972)
later simplified to about 5 pages

Surprising: normalization holds even though MANY things can be
coded in System F!

Can the (erased) term (λx.x x)(λx.x x) be typed in System F?

This can even be proved directly! Do EXERCISE 23.6.3 in TAPL!

3. Properties of System F

When is (partial) type reconstruction possible??

First-class existential types (e.g., using ML’s datatype mechanism)

Add to that universal quantifiers which may appear in annotations
of function arguments

In the presence of subtyping:

Local type inference

4. System F-Sub
Want to combine subtyping and polymorphism.
How?

f = λx:{a:Nat}. x : {a:Nat} {a:Nat}

f {a=0}
{a=0}: {a:Nat}

f {a=0, b=true}
{a=0, b=true} : {a:Nat}

(works in any system)

(using the subsumption rule)

result type has no b field!

(f {a=0, b=true}).b is ill-typed.
we cannot access the b field anymore!!

9

4. System F-Sub
Use polymorphic identity fpoly instead of f:

f = λx:{a:Nat}. x : {a:Nat} {a:Nat}

fpoly = λX. λx:X. x : (∀X.X X)

4. System F-Sub
Use polymorphic identity fpoly instead of f:

f = λx:{a:Nat}. x : {a:Nat} {a:Nat}

fpoly = λX. λx:X. x : (∀X.X X)

fpoly [{a:Nat, b:Bool}] {a=0, b=true}

{a=0, b=true} : {a:Nat, b:Bool}

HURRA!

4. System F-Sub

f2 = λx:{a:Nat}. {orig=x, asucc=succ(x.a)}

Has type {a:Nat} {orig:{a:Nat}, asucc:Nat}

fpoly = λX. λx:X. x

f2poly = λX. λx:X. {orig=x, asucc=succ(x.a)};

4. System F-Sub

f2 = λx:{a:Nat}. {orig=x, asucc=succ(x.a)}

Has type {a:Nat} {orig:{a:Nat}, asucc:Nat}

fpoly = λX. λx:X. x

f2poly = λX. λx:X. {orig=x, asucc=succ(x.a)};

Type Error: Expected Record Type

10

4. System F-Sub

f2 = λx:{a:Nat}. {orig=x, asucc=succ(x.a)}

Has type {a:Nat} {orig:{a:Nat}, asucc:Nat}

fpoly = λX. λx:X. x

f2poly = λX. λx:X. {orig=x, asucc=succ(x.a)};

Type Error: Expected Record Type

f2 should take ANY record type, which has at least the field a: Nat.

4. System F-Sub

f2 = λx:{a:Nat}. {orig=x, asucc=succ(x.a)}

Has type {a:Nat} {orig:{a:Nat}, asucc:Nat}

fpoly = λX. λx:X. x

f2poly = λX. λx:X. {orig=x, asucc=succ(x.a)};

Type Error: Expected Record Type

f2 should take ANY record type, which has at least the field a: Nat.

= any subtype of {a:Nat}

X<:{a:Nat}

4. System F-Sub

f2 = λx:{a:Nat}. {orig=x, asucc=succ(x.a)}

Has type {a:Nat} {orig:{a:Nat}, asucc:Nat}

fpoly = λX. λx:X. x

f2poly = λX. λx:X. {orig=x, asucc=succ(x.a)};

Type Error: Expected Record Type

f2 should take ANY record type, which has at least the field a: Nat.

= any subtype of {a:Nat}

X<:{a:Nat}

4. System F-Sub
Bounded Quantification

f2poly = λX<:{a:Nat}. λx:. {orig=x, asucc=succ(x.a)};

System F<: type abstraction: λX<:T
quantified type: ∀X<:T.T
In contexts we now have Γ, x:T, X<:T

(λX<:T.t12)[T2] [X/T2]t12Evaluation (nothing changes):

Γ, X<:T ` t2:T2

Γ ` λX<:T.t2 : ∀X<:T.T2

Γ ` t1 : ∀X<:T11.T12 Γ ` T2<:T11

Γ ` t1[T2] : [X/T2]T12

Typing rules for type abstraction and type application:

11

4. System F-Sub
Bounded Quantification

f2poly = λX<:{a:Nat}. λx:. {orig=x, asucc=succ(x.a)};

System F<: type abstraction: λX<:T
quantified type: ∀X<:T.T
In contexts we now have Γ, x:T, X<:T

(λX<:T.t12)[T2] [X/T2]t12Evaluation (nothing changes):

Γ, X<:T ` t2:T2

Γ ` λX<:T.t2 : ∀X<:T.T2

Γ ` t1 : ∀X<:T11.T12 Γ ` T2<:T11

Γ ` t1[T2] : [X/T2]T12

Typing rules for type abstraction and type application:
subtyping

4. System F-Sub

Γ,X<:U1 ` S2<:T2

Γ ` ∀X<:U1.S2 <: ∀X<:U1.T2

Unbounded Quantification: ∀X.T := ∀X<:Top.T

Subtyping Quantified Types:

“the kernel rule”

“kernel F-sub”

4. System F-Sub
Scoping:

Γ1 = X<:Top, y:X→Nat

Γ2 = y:X→Nat, X<:Top

Γ3 = X<:{a:Nat,b:X}

Γ4 = X<:{a:Nat,b:Y}, Y<:{c:Bool,d:X}

Which of these contexts are not well-scoped?

4. System F-Sub
Scoping:

Γ1 = X<:Top, y:X→Nat

Γ2 = y:X→Nat, X<:Top

Γ3 = X<:{a:Nat,b:X}

Γ4 = X<:{a:Nat,b:Y}, Y<:{c:Bool,d:X}

Which of these contexts are not well-scoped?

12

4. System F-Sub
Scoping:

Γ1 = X<:Top, y:X→Nat

Γ2 = y:X→Nat, X<:Top

Γ3 = X<:{a:Nat,b:X}

Γ4 = X<:{a:Nat,b:Y}, Y<:{c:Bool,d:X}

Which of these contexts are not well-scoped?

λX<:{a:Nat, b:X}

X<:{a:Nat, b:{a:Nat, b:Top}}

“F-bounded Quantification”

4. System F-Sub

F-Bounded Quantification:

used in GJ design

more complex than F-sub,

And “it only becomes really interesting when
recursive types are also included ..

.. No non-recursive type can satisfy
X<:{a:Nat,b:X}”

4. System F-Sub

In kernel F-sub, two quantified types can only be compared if
their upper bounds are identical.

Similar to restricting the arrow rule

S2 <: T2

U S2 <: U T2

Γ,X<:U1 ` S2<:T2

Γ ` ∀X<:U1.S2 <: ∀X<:U1.T2

4. System F-Sub

In kernel F-sub, two quantified types can only be compared if
their upper bounds are identical.

Similar to restricting the arrow rule

S2 <: T2

U S2 <: U T2

Γ ` T1<:S1 Γ,X<:T1 ` S2<:T2

Γ ` ∀X<:S1.S2 <: ∀X<:T1.T2

“full F-sub”

13

4. System F-Sub
Which types are related by the subtype relation

of full F-sub, but NOT in kernel F-sub???

Γ,X<:U1 ` S2<:T2

Γ ` ∀X<:U1.S2 <: ∀X<:U1.T2

Γ ` T1<:S1 Γ,X<:T1 ` S2<:T2

Γ ` ∀X<:S1.S2 <: ∀X<:T1.T2

4. System F-Sub
Which types are related by the subtype relation

of full F-sub, but NOT in kernel F-sub???

Γ,X<:U1 ` S2<:T2

Γ ` ∀X<:U1.S2 <: ∀X<:U1.T2

Γ ` T1<:S1 Γ,X<:T1 ` S2<:T2

Γ ` ∀X<:S1.S2 <: ∀X<:T1.T2

Are there any USEFUL ones???

5. Properties of F-Sub
Preservation
If t ` t:T and t t’ , then Γ ` t’:T.

Progress
If t is a closed and well-typed term, then either
t is a value, or
t t’ for some term t’.

Proofs: Induction on the structure of terms.

Use canonical forms lemma:
If v is closed value of type T1 T2, then v = λx:S1.t2

If v is closed value of type ∀X<:T1.T2, then v = λX<:T1.t2.

5. Properties of F-Sub

Theorem.
Typing and Subtyping in kernel F-sub is decidable.

Theorem.
Subtyping in full F-sub is undecidable.

Next time: (1) prove these theorems.

(2) look at FGJ = FJ+generics.

