Lecture 9 Dec. 15th, 2004
Sebastian Maneth

http://lampwww.epfl.ch/teaching/type Systems/2004

Today Parametric Polymorphism

1. Recall Let-Polymorphism
2. SystemF

3. Properties of System F
4. System F-sub

5. Properties of F-sub

" A
1. Recall Let-Polymorphism
In simply-typed lambda-calculus, we can leave out ALL type annotations:
-> insert new type variables
-> do type reconstruction (using unification)
In this way, changing the let-rule, we obtain

Let-Polymorphism

-> Simple form of polymorphism
-> Introduced by [Milner 1978]in ML
-> also known as Damas-Milner polymorphism

-> in ML, basis of powerful generic libraries
(e.g., lists, arrays, trees, hash tables, ...)

" JEE
1. Recall Let-Polymorphism

[S o I F[x2>t,]t,:T,

I'F Tet x=t; in t, :T,

Tet double = Ax.Ay. x(x(¥)) 1in
1

let a = double (Ox:int. x+2) 2 in {
let b = double (Ax:bool. x) false in {..}
}

}

CAN be typed now!! Because the new let rule creates two copies
of double, and the rule for abstraction assigns a different type variable
to each one.

" JEE
1. Recall Let-Polymorphism

Limits of Let-Polymorphism?

-> Only let-bound variables can be used polymorphically!
- NOT lambda-bound variables

Ex.: let f = 2ag. .. g(l) .. g(true) ..
in { fOx.x) }

is not typable: when typechecking the def. of f, g has type X (fresh)
Which is then constrained by X = int - Y and X = bool > Z.
Functions cannot take polymorphic functions as parameters.

(= no polymorphic arguments!)

"
2. System F

Aka polymorphic lambda-calculus or second-order lambda-calculus.

-> do lambda-abstraction over type variables,
define functions over types

Invented by
-> Girard (1972) motivated by logics

- Reynolds (1974) motivated by programming.

" JEE
2. System F

- Add (universal) quantification over TYPEs!

- Straightforward extension of simply typed lambda-calculus by
two new constructs:

Type Abstraction: AX. t

Type Application: t [T]

For example, the polymorphic identity function

id = AX. AX:X. X

Aka polymorphic lambda-calculus or second-order lambda-calculus.

" JEE
2. System F
What is the type of

id = AX. AX:X. X

- If applied to atype T, id vyields function of type T>T.

" JEE
2. System F
Evaluation, like simply typed lambda (3 rules), plus two new rules:
t, >t

e OX.tp) [T,] > [X/T,]t
4[T,] > t,'[T,] et S

Values (in the pure system) are

> MX:T.t abstraction value
2> AX.t type abstraction value

Contexts contain x:T term variable binding
and X type variable binding

" JEE
2. System F
Aka polymorphic lambda-calculus or second-order lambda-calculus.
- Add (universal) quantification over TYPEs!
-> Straightforward extension of simply typed lambda-calculus by
two new constructs:
Type Abstraction: AX. t
Type Application: t [T]
For example, the polymorphic identity function
id = AX. AX:X. X
can be applied to Nat by writing id [Nat]. The resultis

[X/Nat] (Ax:X. xX) = Ax:Nat.x

" A
2. System F
What is the type of
id = AX. AX:iX. X
- If applied to atype T, id yields function of type T>T.

Therefore denote its type by: VX.X>X

Typing rules for type abstraction and type application:

X Ft,:T, FEt; @ WX.Ty,
FEMX.t, @ VX.T, 7,1 @ [X/T,]1Ty,

" JEE
2. System F

Examples.
Polymorphic identity function: id = AX.Ax:X. X
Apply it:

id [Nat] 5

(X.Ax:X. x) [Nat] 5
[X/Nat] (Ax:X. x) 5
(Ax:Nat. x) 5
[x/510)

5

222

As we saw, the type of id is ¥X. X > X.

Can you find a function different from 1d, with the SAME TYPE??

" JEE
2. System F

Examples.
Polymorphic doubling function:

double = ax. Af:x2>X. ra:x. f (f a)

double [Nat] (ix:Nat. succ(succ(x))) 3
>7

quadruple = AX. double [X>X] (double [X])

What's the type of quadruple?

O
2. System F

Examples.
In simply typed lambda-calculus

omega = (Ax.x x) (Ax. X Xx)

canNOT be typed!

Neither can the self-application fragment (Ax.x x)
In System-F we CAN type it:

self = ax: (WX. X2>X). x [WX. X>X] x
self: (WX.X2X) 2> (VX.X>X)

Apply self tosome function; e.g.,to |{AY.Ay:Y. y)

Polym. Fu’s are “first class citizen”

" JEE
2. System F
Examples.

In simply typed lambda-calculus

omega = (Ax.x x) (Ax. x X)

canNOT be typed!

Neither can the self-application fragment (Ax.x x)
In System-F we CAN type it:

self = x: (WX. X2X). x [¥X. X>X] x
self: (WX.X2X) > (¥X.X>X)

" B
2. System F

Main advantage of polymorphism:

- many things need not be built into the language, but
can be moved into libraries

Example. Lists.
Before:
For atype T: List T describes finite-length lists of elements from T.

New syntactic forms: ni1[T]
cons[T] t1 t2

isnil[T] t
head[T] t
tail[T] t

" JEE
2. System F

Main advantage of polymorphism:

- many things need not be built into the language, but
can be moved into libraries

Example. Lists.

Now:
List X describes finite-length lists of elements of type X.

New syntactic forms: nil: VX. List X
cons: VX. X List X & List X
isnil: ¥X. List X - Bool
head: VX. List X 2> X
tail: WX. List X & List X

" JEE
2. System F

Now we can build a library of polymorphic operations on lists.
For example, a polymorphic map function.

map = AX.AY.

Afix>v.
(fix (um:List X > List Y.
Al:List X.

if disnil1[x] 1 then nil[Y]
else cons[Y](f (head[x] 1))
(m (taillx] 1))

What is the type of map?

" JEE
2. System F

Now we can build a library of polymorphic operations on lists.
For example, a polymorphic map function.

map = AX.AY.
rfix->v.
(fix (um:List X > List Y.
Al:List X.
if isnil1[x] 1 then nil[Y]
else cons[Y](f (head[x] 1))
(m (taillx] DI

What is the type of map?
1 = cons[Nat] 4 (cons[Nat] 3 (cons[Nat] 2 (nil[Nat])))

head[Nat] (map[Nat] [Nat] (Ax:Nat. succ x) 1)
>5

" JEE
3. Properties of System F

System F is impredicative:

- Polymorphic types are universally quantified over the
universe of ALL types. This includes polymorphic types themselves!

-> Polymorphic types are “1st class” citizens in the world of types
E.g. (f: (WX.x>Xx). f) id

ML (let) — polymorphims is predicative:

- Polymorphic types are 2" class. Arguments do not have
polymorphic types! (prenex polymorphism)

Eg. (fn f => fn x => f x) id 3

" JEE
3. Properties of System F

System F is impredicative:

-> Polymorphic types are universally quantified over the
universe of ALL types. This includes polymorphic types themselves!

-> Polymorphic types are “1% class” citizens in the world of types

) ->Type variables range only over
Eg. Of: (vX.x=>x). f) id quantifier-free types (monotypes)
->Quantified types (polytypes, or

type schemes) not allowed on left of arrow

ML (let) — polymorphims is predicative:
- Polymorphic types are 2™ class. Argyments do not have
polymorphic types! prenex polymorphism

Eg. (fn f = fn x => f x) id 3

3. Properties of System F

Parametricity
Evaluation of polymorphic applications does not depend
on the type that is supplied!

- There is exactly one function of type VX.X->X
(namely, the identity)

—>There are exactly two functions of type VX.X->X->X
which have different behavior.
Namely, AX.2a:X.Ab:X. a
and AX.ra:ixX.ab:X. b

These do not (and cannot) alter their behavior depending on X!

" JEE
3. Properties of System F

Parametricity
Evaluation of polymorphic applications does not depend
on the type that is supplied!

Nevertheless, we defined a type-passing semantics:

OX. 1) [T,] > [X/T]t,

Why do this,

if eval. does not depend on it?

-> type-erasure semantics:

After the typechecking phase, all types are erased!

Erasure and Type Reconstruction

erase(x)
erase(Ax:T.t)
erase(t t’)
erase(AX.t)
erase(t [T])

X
Ax.erase(t)
erase(t) erase(t’)
erase(t)

erase(t)

Theorem. (Wells, 1994): Let u be a closed term. It is undecidable,
whether there is a well-typed system-F-term t with erase(t)=u.

- Type Reconstruction for system F is not possible!

" JEE
Erasure and Type Reconstruction

Even if we leave intact all typing annotations, except the
arguments to type applications:

perase(x)
perase(Ax:T.t)
perase(t t’)
perase(AX.t)
perase(t [T])

X
AX:T.perase(t)
perase(t) perase(t’)
AX.perase(t)
perase(t) []

Then Type Reconstruction is still not possible!

Theorem. (Boehm, 1989): Let u be a closed term. It is undecidable,
whether there is a well-typed system-F-term t with perase(t)=u.

Erasure and Evaluation

erase(x) = X

erase(Ax:T.t) = Ax.erase(t)
erase(t t’) = erase(t) erase(t’)
erase(AX.t) = erase(t)

erase(t [T]) = erase(t’)

We claimed that if t is well-typed, then t and erase(t) evaluate
to the same.

Is this also true in the presence of side effects??
What about

let f = (WX.error) in 0

" JEE
Erasure and Evaluation

erase(x)
erase(Ax:T.t)
erase(t t’)
erase(AX.t)
erase(t [T])

X

Ax.erase(t)
erase(t) erase(t’)
h_.erase(t)
erase(t’) dummyv

We claimed that if t is well-typed, then t and erase(t) evaluate
to the same.

Is this also true in the presence of side effects??

NO! --- but can be fixed easily.

N
3. Properties of System F

Uniqueness
Every well-typed System-F-term has exactly one type.

Preservation
If tHt:T and t>t’, then THt’:T.

Progress

If t isaclosed and well-typed term, then either
t is avalue, or
t > t’ for sometermt.

Proofs: straightforward induction on the structure of terms.

" JEE
3. Properties of System F

Normalization
Every well-typed System-F-term t is normalizing, i.e.,

ElaE I
Proof: very hard (Girard’s PhD thesis, 1972)

-> later simplified to about 5 pages

Surprising: normalization holds even though MANY things can be
coded in System F!

Can the (erased) term (Ax.x x) (Ax.x x) be typed in System F?

N
3. Properties of System F

Normalization
Every well-typed System-F-term t is normalizing, i.e.,

EIE S 4
Proof: very hard (Girard’s PhD thesis, 1972)

- later simplified to about 5 pages

Surprising: normalization holds even though MANY things can be
coded in System F!

Can the (erased) term (Ax.x X) (Ax.Xx X) be typed in System F?

- This can even be proved directly! Do EXERCISE 23.6.3 in TAPL!

" JEE
3. Properties of System F

When is (partial) type reconstruction possible??

- First-class existential types (e.g., using ML's datatype mechanism)

- Add to that universal quantifiers which may appear in annotations
of function arguments

In the presence of subtyping:

-> Local type inference

" JEE
4. System F-Sub

Wantto combine subtyping and polymorphism.
How?

f = ax:{a:Nat}. x : {a:Nat} > {a:Nat}
f_){;\:i)o}}: {a:Nat} (works in any system)

f {a=0, b=true} . X
> {a=0, b=true} : {a:Nat} (using the subsumption rule)

result type has no b field!

(f {a=0, b=true}).b isill-typed.
- we cannot access the b field anymore!!

" JEE
4. System F-Sub

Use polymorphic identity fpoly instead of f:

f = ax:{a:Nat}. x : {a:Nat} 2> {a:Nat}

fpoly = AX. ax:iX. x @ (VX.X>X)

4. System F-Sub

Use polymorphic identity fpoly instead of f:

f = ax:{a:Nat}. x : {a:Nat} > {a:Nat}

fpoly = AX. ax:X. x @ (VX.X>X)

fpoly [{a:Nat, b:Bool1}] {a=0, b=true}

-> {a=0, b=true} : {a:Nat, b:Bool}

HURRA!

" JEE
4. System F-Sub

f2 = ax:{a:Nat}. {orig=x, asucc=succ(x.a)}
Has type {a:Nat} - {orig:{a:Nat}, asucc:Nat}

fpoly = AX. Ax:X. x

f2poly = AX. Ax:X. {orig=x, asucc=succ(x.a)};

4. System F-Sub
f2 = Ax:{a:Nat}. {orig=x, asucc=succ(x.a)}
Has type {a:Nat} - {orig:{a:Nat}, asucc:Nat}

fpoly = AX. Ax:X. X

f2poly = AX. Ax:X. {orig=x, asucc=succ(x.a)};
L

Type Error: Expected Record Type

" JEE
4. System F-Sub

f2 = ax:{a:Nat}. {orig=x, asucc=succ(x.a)}
Has type {a:Nat} - {orig:{a:Nat}, asucc:Nat}

fpoly = AX. AX:X. X

f2poly = AX. Ax:X. {orig=x, asucc=succ(x.a)};

L J

Type Error: Expected Record Type

f2 should take ANY record type, which has at least the field a: Nat.

" JEE
4. System F-Sub

f2 = Ax:{a:Nat}. {orig=x, asucc=succ(x.a)}
Has type {a:Nat} - {orig:{a:Nat}, asucc:Nat}

fpoly = AX. AX:X. X

f2poly = AX. Ax:X. {orig=x, asucc=succ(x.a)};
L

Type Error: Expected Record Type

2 should take ANY record type, which has at least the field a: Nat.

= any subtype of {a:Nat}

X<:{a:Nat}

" JEE
4. System F-Sub

f2 = ax:{a:Nat}. {orig=x, asucc=succ(x.a)}
Has type {a:Nat} > {orig:{a:Nat}, asucc:Nat}

fpoly = AX. AX:X. X

f2poly = XQ. Ax:X. {orig=x, asucc=succ(x.a)};
L J

pe Error: Expected Record Type

f2 should take ANY record type, which has at least the field a: Nat.

= any subtype of {a:Nat}

X<:{a:Nat}

" JEE
4. System F-Sub

Bounded Quantification

f2poly = AX<:{a:Nat}. Ax:. {orig=x, asucc=succ(x.a)};

System F_. type abstraction: AX<:T
quantified type: VX<:T.T
In contexts we now have I, x:T, X<:T

Evaluation (nothing changes): ~ (Ax<:T.ty,) [T,] > [X/T,]1ty,
Typing rules for type abstraction and type application:

[LX<iT F1,:T, Dt 0 WX<iT. Ty, T F Tp<iTyy

FEAX<iT.t, @ WX<:T.T, FET] 0 X707y,

" JEE
4. System F-Sub

Bounded Quantification

f2poly = AxX<:{a:Nat}. Ax:. {orig=x, asucc=succ(x.a)};

System F_. type abstraction: AX<:T
quantified type: VX<:T.T

In contexts we now have I, x:T, X<:T

Evaluation (nothing changes): (AX<:T.t;,)) [T,] > [X/T,1t;,
Typing rules for type abstraction and type application:
subtyping

[UX<iT B t,:T, DRty r WX<iTyy Ty, T2

Ty

IFEAX<:T.t, @ WX<:T.T, TE4T] o X/T1Ty,

" JEE
4. System F-Sub

Unbounded Quantification: VX.T = VX<:Top.T

Subtyping Quantified Types:

[X<iUp b S,<iT,

I F WX<:U;.S, <@ VX<:U;.T,

“the kernel rule”

> “kernel F-sub”

" JEE
4. System F-Sub
Scoping:
I'l = X<:Top, y:X-Nat
T2 = y:X»Nat, X<:Top
'3 = X<:{a:Nat,b:Xx}

T4 = Xx<:{a:Nat,b:Y}, Y<:{c:Bool,d:x}

which of these contexts are not well-scoped?

" JE
4. System F-Sub
Scoping:
'l = X<:Top, y:X-Nat
y:x-+Nat, X<:Top

X<:{a:Nat,b:x}

X<:{a:Nat,b:Y}, v<:{c:Rool,d:x}

which of these contexts are not well-scoped?

"
4. System F-Sub
Scoping:
I'l = X<:Top, y:X-Nat
YiXoNat, Xe:Ton

X<:{a:Nat b:x}

X<:{a:Nat,b:¥}, Y<:{c:Bool,d:x}

which of these contexts are not well-scoped?
aX<:{a:Nat, b:x}
X<:{a:Nat, b:{a:Nat, b:Top}}

> “F-bounded Quantification”

" JEE
4. System F-Sub
F-Bounded Quantification:
> used in GJ design
-> more complex than F-sub,

And “it only becomes really interesting when
recursive types are also included ..

. No non-recursive type can satisfy
X<:{a:Nat,b:x}”

" JEE
4. System F-Sub

- In kernel F-sub, two quantified types can only be compared if
their upper bounds are identical.

Similar to restricting the arrow rule

s, <t T,

U>s, <: UDT,

[, X<iUp F S<iT,

" F ¥X<:Up.S, <: ¥X<:U;.T,

" JEE
4. System F-Sub

-> In kernel F-sub, two quantified types can only be compared if
their upper bounds are identical.

Similar to restricting the arrow rule

s, < T,

U>s, < UDT,

['FT<iS; ,X<iT, B S<iT,

Ik ¥X<:S..S, <@ WX<:T..T,

> “full F-sub”

" JEE
4. System F-Sub

Which types are related by the subtype relation

of full F-sub, but NOT in kernel F-sub???

[, X<:Uy B S,<:T,

I' B VX<:iU;.S, <: WX<:U;.T,

I FT<:S, T,X<:T, F Sy<iT,

I F V¥X<:S,.S, < WX<:T;.T,

" JEE
4. System F-Sub

Which types are related by the subtype relation

of full F-sub, but NOT in kernel F-sub???

[, X<:U; b S,<:T,

'k VX<:iU;.S, <i WX<:iU;.T,

[FT<:S; [,X<:T, b Sy<:T,

Ik VX<:S;.S, <: WX<:T..T,

> Are there any USEFUL ones???

" JEE
5. Properties of F-Sub

Preservation
If tHt:T and t>t’, then THt’:T.

Progress

If t is aclosed and well-typed term, then either
t is avalue, or
t > t’ for sometermt’.

Proofs: Induction on the structure of terms.

->Use canonical forms lemma:
If vis closed value of type T,>T,, then v=2Ax:S;.t,

If vis closed value of type VX<:T;.T,, then v=2AX<:T;.t,.

" JEE
5. Properties of F-Sub

Theorem.
Typing and Subtyping in kernel F-sub is decidable.

Theorem.
Subtyping in full F-sub is undecidable.

Next time: (1) prove these theorems.

(2) ook at FGJ = Fl+generics.

