Important:

The FJ Programming Assignment is only due

tomorrow, Dec. 9™, at 17:00.

- send code to burak.emir@epfl.ch

Lecture 8 Dec. 8th, 2004
Sebastian Maneth

http://lampwww.epfl.ch/teaching/typeSystems/2004

" JEE " JEE
Today .. into Polymorphism ..
A Critique of Statically Typed PLs

1. Whatis Polymorphism? - Types are obtrusive: they overwhelm the code
2. Type Inference (Reconstruction)
3. Unification - Types inhibit code re-use: one version for each type.

4. Let-Polymorphism

double_int = Ax:int>int.Ay:int. x(x(y))

5. Conclusion double_bool = Ax:bool->bool.iy:bool x(x(y))

" JEE
A Critique of Statically Typed PLs

- Types are obtrusive: they overwhelm the code
= Type Inference (Reconstruction)

- Types inhibit code re-use: one version for each type.

" JEE
1. What is Polymorphism?

Generally: Idea that an operation can be applied to
values of different types. (‘poly’=‘many’)

Can be achieved in many ways..

According to Strachey (1967, “Fundamental Concepts in PLs") and Cardelli/Wegner (1985, survey)

parametric
Universal
2 Polymorphism (true)
inclusion
polymorphism
overloading
Ad hoc
(apparent)
coercion
" JEE " JEE

Ad Hoc Polymorphism

Overloading (resolved at compile-time. -- Overridden methods at run-time)
-> one name for different functions
-> only a conveniant syntax abbreviation

> example: . . jnt > int 1+ 2

+ 1 real > real

Coercion (= compile away subtyping by run-time coercions)

((real 1) + 1.0 or 1+1.0

Universal Polymorphism

Inclusion = Subtype Polymorphism class CPt extends Pt {

color c;
- One object belongs to many classes. CPL@nt x, int y, color ¢) {
E.g., acolored point iﬁ?ifﬁx;yﬁi

can be seen as a point.

3
color getc () { return this.c; }

Parametric Polymorphism
-> Use type variables

f = xzint>int.ay:int. x(x(y))

Universal Polymorphism

Inclusion = Subtype Polymorphism class CPt extends Pt {
color c;
CPt(int x, int y, color c) {
super(x,y);
this.c = c;

-> One object belongs to many classes.
E.g., acolored point
can be seen as a point.

color getc () { return this.c; }

Parametric Polymorphism

- Use type variables

f = Axzint>int.ay:sint. x(x(y))

bool->bool bool

" JEE
Universal Polymorphism
Inclusion = Subtype Polymorphism class CPt extends Pt {
color c;
- One object belongs to many classes. CPt(int x, inty, color ¢) {
- super(x,y);
E.g., acolored point this.c ~ o
can be seen as a point. ’
color getc Q { return this.c; }
Parametric Polymorphism
- Use Type Variables
f = Ax: X Ays Y oo x(x(y))
" JEE

Universal Polymorphism

Inclusion = Subtype Polymorphism class CPt extends Pt {

color c;
- One object belongs to many classes. CPLdnt x, int y, color ¢) {
E.g., acolored point iﬁ?ifﬁiyii

can be seen as a point.
color getc () { return this.c; }

Parametric Polymorphism

- Use Type Variables

f= W X Ayt Y ooox(x(y))

Y2Y Y

“principal type” of f = Ax.ry. x(x(y))

Parametric Polymorphism

How to find the principal type of

AX-Ay. x(x(y)) ??

-> type check and accumulate constraints about the types of the variables

" JEE
Parametric Polymorphism

How to find the principal type of ~ Ax:X.Ay:Y. x(x(y)) ??

- type check and accumulate constraints about the types of the-variabtes
Type Variables

Type checking x(y) requiresthat X=Y > Z

Type checking x(x(y)) requires that X=Z > W

" JEE
Parametric Polymorphism

How to find the principal type of ~ Ax:X.Ay:Y. x(x(y)) ??

-> type check and accumulate constraints about the types of-veartabtes
Type Parameters

Type checking x(y) requires that X=Y > Z

Type checking x(x(y)) requires that X=Z > W

= Z=Y and X=Y > Y (and resulttypeisY)

This process is called type inference or type reconstruction.

Parametric Polymorphism
How to find the principal type of Ax:X.Ay:Y. x(x(y)) ?7?

-> type check and accumulate constraints about the types of-vattabites
Type Parameters

Type checking x(y) requires that A= 0/ constraints

Type checking x(x(y)) requires that| X = Z = W

2 Z=Y and| X =Y -> Y [(and result type is Y)

smallest solution

This process is called type inference or type reconstruction.

" JEE
2. Type Inference (Reconstruction)

For simply typed lambda calculus (with base types, Int and Bool)

A Type Substitution is a mapping from type variables to types.
E.g. 6 =[X/bool, Y/ X>X]

then o X = bool
and oY = X2>X (applied simultaneously)

Composition ooy “sigma after gamma”
(co1)S=0(yS)

coy = [X/o(T) forX/Tinvy, and
XIT for X/ Tin o with X ¢ dom(y) |

" JEE
2. Type Inference (Reconstruction)

Lemma. Type substitution preserves typing:
if TEtT then ol'Fot:oT.

Proof. By induction on the structure of term t.

Extend type substitution to environments I' and terms t.

Example. x:X FAy:X->int.y x:int is derivable.
Applying o =[X/ bool] gives
x:bool FAy:bool->int. y x :int

which is also derivable.

" JEE
2. Type Inference (Reconstruction)

T': environment
t: term

A solution for (T, t) isapair (o, T) suchthat oI’ Fot: T

Example: ' = f: X, a:Y and t=fa

Then ([X/Y > int],int)
([X/int=>int, Y > int], int)
([XIY>2Z,2)

([XIY>Z,Z2>int],Z) are solutions of (T, t)

" JEE
2. Type Inference (Reconstruction)

T': environment
t @ term

A solution for (T, t) isapair (o, T) suchthat oI'Fot: T

" JEE
2. Type Inference (Reconstruction)

T': environment
t @ term

A solution for (T, t) isapair (o, T) suchthat o' Fot: T

Find three different solutions for I' = @ and

t = AX:X. Ay:Y. Az:Z. (X 2) (y 2)

Constraint-Based Typing:
Given (T, t)

Calculate set of constraints that must be satisfied by ANY
solution for (T, t)

true : Bool Talse : Bool
zero : Nat
t; - Nat t; - Nat
succt, : Nat predt, : Nat

2. Type Inference (Reconstruction)

t,:Bool T 3T
ift, thent,elsety: T

t; : Nat
isZerot, : Bool

kY, :T|yC C=Cu{T=Nat}

Tt isZerot, : Bool ||, C

]

2. Type Inference (Reconstruction) 2. Type Inference (Reconstruction)
true : Bool false : Bool t,:Bool t,: T ty: T true : Bool false : Bool t;:Bool i T tg: T
zero : Nat ift thent,elset;: T zero : Nat ift thent,elset;: T

4 Nat t; - Nat t; - Nat t; @ Nat 1 : Nat t; - Nat
succt, : Nat predt, : Nat isZerot, : Bool succ t; : Nat predt; : Nat isZerot, : Bool
Ikt:T|y,C C=CuU{T=Nat} Ikt:T|yC C=Cu{T=Nat}
I'ksucct, : Nat ||, C I'kpredt, :Nat ||, C
]]

2. Type Inference (Reconstruction)

true : Bool false : Bool L. Bool T T
zero : Nat ift, thentelset,: T
t, - Nat t; - Nat t; - Nat
succt, : Nat predt, : Nat isZerot, : Bool
THt T [, C U1, U2, U3 pairwise disjoint
THt Ty lly, Co
Ity Tsllus Cs C'=C,UC,UCyU {T,=Bool, T,=T,}

Ik ift thentelset : T, llyuuzuus ©

" JEE " JEE
2. Type Inference (Reconstruction) 2. Type Inference (Reconstruction)
Ximcl el B Bl I'Ft,:T>R 6T el LaEn B T I'Ft:T=>R IEt,:T
LLx T FEiel v o7 ST I'Ft, t,:R LLox:T L GTE BT T, I'Ft, t,:R
x-Tel x:Tel
—_—— Variable and Abstraction: —_——— Variable and Abstraction:
FEx:T |, {} I'Ex:T |, {}
No new constraints! No new constraints!
x:T, F t:T, ||y C x:T, F t:T, ||y C
BUT: we can leave out
IEAX:T,. €T 2T, ||y C I'Fax .t:T,2T,|yC type annotations now!!
" JEE " JEE

2. Type Inference (Reconstruction)

x:Tel x:T, F t:T, FRE TR TREIT
FEx:T FEAX:T,.t:T5T, 'Lt £ -R
Application:

Tt Ty lly, Cy X fresh

Tkt T,y C, C=C,UC,U{T,=T,> X}

TE ot X llysueup ©

2. Type Inference (Reconstruction)

Supposethat T'FtS ||C

solution of (T',t,S,C) is apair (o, T) such that ¢ satisfies Cand 6S=T

How to find a solution to a set of constraints??

Unification [Robinson, 1965]
-> Basis to logic programming (e.g., used in Prolog)

> Linear space algorithm [Martelli, Montanari, 1984]

" JEE
3. Unification
-> More precisely: syntactic equational unification

- Define the set of terms
t = x| f(t,t,) with xe Var and f € FuncSymbols

-> Given an equation s at we look for substitution
suchthat os =~ ot

(o is called unifier for s t)

o, more general than o, iff 3Josuchthatco, =0,
Write 6, <o, (o, can be obtained from c,!)

Principal Unifier of s ~ tis unifier o s.t. for all unifiers ¢ ¢ < ¢’

Unification Theorem: s = t has principal unifier, if it is unifiable!

"
3. Unification

Example: f(x,y) = f(a,y)

= o,=[x/a, y/b] isaunifier because o, f(x,y) =0, f(a,y)
flab) = f(ab)

- o,=[x/a] is principal unifier because o, f(x,y) = o, f(a,y)
f(a.y) f(ay)

o, <o, because [y/b]o,=0;

" JEE
3. Unification by Martelli, Montanari
R = set of equations of the form s =t

t=t,R|c =>yyR]|o
f(..) = g(...), R o =y, L iff=gor Arity(f) = Arity(g)

f(Sy,8y) = f(ty,), R0 =yySi =1y, ..., 5= t, R | o

Xx=t,R|c =y X/tIR|[x/tf]lc ifx ¢ var(t)
(Self Occurence Check)
x=t,R|c =y L ifxevar(t)

t=x,R|c =yyXx=t,R| o

B |o=ymo set of constraints

Start with: C | []

empty substitution

000

3. Unification by Martelli, Montanari
Examples:

Cl = {X=int, Y =X>X}

C2 = {int>int=X>Y}

C3 = {XDY=YDZ, Z=U>DW}

C4 = {int=int>Y}

C5 = {Y=int>Y }

" JEE
3. Unification by Martelli, Montanari

Supposethat THtS ||C

solution of (I't,S,C) is apair (o, T) such that ¢ satisfies Cand 6S =T

- Use MM - unification algorithmon C | []

> If this returns substitution o,

then oS is the principal type of t under I'.

" JEE
4. Let-Polymorphism

Let us now try to use this parametric function:

let double = Ax:Y-DY. Ay:Y. x(X(y)) in

{
let a = double (Ax:int. x+2) 2 in {
let b = double (Ax:bool. x) false in {..}
3

3

" JEE
4. Let-Polymorphism

Let us now try to use this parametric function:

let double = Ax:Y>Y. ry:Y. x(x(y)) in

{
let a = double (Ax:int. x+2) 2 in {
let b = double (kx:bool. x) false in {..}
3

3

NFEt:T, [X:Ty FE,0T,

I+ let x=t, in t, :T,

" JEE
4. Let-Polymorphism

Let us now try to use this parametric function:

let double = Ax:Y->Y. Ay:Y. x(x(y)) in
{
let a = double (Ax:int. x+2) 2 in {
let b = double (Ax:bool. x) false in {..}
3
}

IFt:T, [X:Ty FE,0T,

I+ let x=t, in t, :T,

Can NOT be typed!

constraints: Y=Y = int>int AND Y=Y = bool->bool

" JEE
4. Let-Polymorphism
Should NOT be required
How can we ‘repair’ this? to be the same type T,!

FEnfT) LT,
'k let x=t; in t, :T,

" JEE
4. Let-Polymorphism
Should NOT be required
How can we ‘repair’ this? to be the same type T,!

CRHET) xR,
'k let x=t; in ¢, :T,

- substitute, and only type check the expanded term

I F[x>t]t,:T,

[+ let x=t; in t, :T,

" JEE
4. Let-Polymorphism
Should NOT be required
How can we ‘repair’ this? to be the same type T,!

I I—t1® l,xﬁ'Dl—tZ:T2

'k let x=t, in t, :T,

-> substitute, and only type check the expanded term

' F[x2>t]1t,:T,

I'F let x=t; in t, :T,

... now it works ... but, what if x does not occur in t,??

" JEE
4. Let-Polymorphism
Should NOT be required
How can we ‘repair’ this? to be the same type T,!

I I—t1® [,x@DI—tZ:T2

I'F let x=t, in t, :T,

-> substitute, and only type check the expanded term

I F X2t]t,:T, MHt:T,

'k let x=t, in t, :T,

... now it works ... but, what if x does not occur in t,??

- t, should be typable! Add t,:T, as premise.

10

" JEE
4. Let-Polymorphism

IEt,:T, I F[x2>t]t,:T,

'k let x=t, in t, :T,

fet double = Jx.dy. x(x(¥y)) in

{
fet a = double (Ox:int. x+2) 2 in {
fet b = double (Ax:bool. x) false in {..}
}

}

CAN be typed now!! Because the new let rule creates two copies
of double, and the rule for abstraction assigns a different type variable
to each one.

" JEE
4. Let-Polymorphism

IFt:T, I F[xX2>t]t,:T,

'k let x=t, in t, :T,

Problem with Let-Polymorphism:

If body of let contains many occ’s of x,

then it will be checked many times!

-> Design a more clever algorithm

Good algorithms in practice appear “essentially linear”

. but....

" JEE
4. Let-Polymorphism

... this OCaml program ..

let val fO = fun x => (X,x) in
let val f1 = fun y => fO (fO y) in
let val f2 = fun y => f1 (f1 y) in
let val f3 = fun y => f2 (f2 y) in
let val f4 = fun y => f3 (f3 y) in
4 (fun z => z)

. is well-typed, but takes a **LONG** time to type check!!

" JEE
4. Let-Polymorphism

Program Derived Type Type Size Constraints
let val f0 = VX0:X0->X0*X0 20 0
fun x => (x,X) in

let val f1 = fun y => yX1:X1 —(XI*X1)*(X1*X1) 22 2
0 (fO y) in

Tet val 2 = fun y => yX2:X2-5(((X2*X2)*(X2*X2))* 24 4
1 (F1y) in ((X2*X2)*(X2*X2)))*

let val f3 = fun y => (((X2*X2)*(X2*X2))* 28 8
2 (f2 y) in ((X2*X2)*(X2*X2))))

let val f4 = fun y => 216 16
3 (f3 y) in ()

f4 (fun z => z)
end end end end end

11

" JEE
4. Conclusion
In simply-typed lambda-calculus, we can leave out ALL type annotations:
-> insert new type variables
- do type reconstruction (using unification)
In this way, changing the let-rule, we obtain

Let-Polymorphism

- Simple form of polymorphism
- Introduced by [Milner 1978]in ML
-> also known as Damas-Milner polymorphism

-> in ML, basis of powerful generic libraries
(e.g., lists, arrays, trees, hash tables, ...)

00
4. Conclusion

With let-polymorphism, only let-bound values can be used
polymorphically. A-bound values cannot be used polymorphically.

Example: let ¥ =2g. ...g(1)...g(true)...
in f(Ox.x)

is not typable: when typechecking the definition of f,
g has type X (a fresh type variable) which is then constrained by
X =int>Y and X = bool—»Z

Functions cannot take polymorphic functions as parameters.
This is the key limitation of let-polymorphism.

-> Can this be fixed/generalized?? YES: System F (next time)!
Polymorphic Lambda Calculus

" JEE
4. Conclusion
Next time: - polymorphic lambda-calculus (system F)
(15.12))
-> polymorphic lambda-calculus + subtyping =
“Bounded Quantification” (System “F-sub” F_.)

-> written assignment will be distributed

(to be handed in by 22.12.)

22.12.. -> adding generics to FJ (= FGJ)

The programming assignment to be done by 21.01. is
about implementing FGJ!

12

