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Type Systems

Lecture 8     Dec. 8th, 2004
Sebastian Maneth

http://lampwww.epfl.ch/teaching/typeSystems/2004

Important:

The  FJ Programming Assignment is  only due 

tomorrow,  Dec. 9th,  at 17:00.

send code to   burak.emir@epfl.ch

Today               .. into Polymorphism .. 

1. What is Polymorphism? 

2. Type Inference (Reconstruction)

3. Unification

4. Let-Polymorphism 

5. Conclusion

A Critique of Statically Typed PLs

Types are obtrusive:   they overwhelm the code

Types inhibit code re-use:  one version for each type.

double_int =  λx:int int.λy:int. x(x(y))
double_bool = λx:bool bool.λy:bool x(x(y))
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A Critique of Statically Typed PLs

Types are obtrusive:   they overwhelm the code

Type Inference  (Reconstruction)

Types inhibit code re-use:  one version for each type.

Polymorphism

1. What is Polymorphism?

According to Strachey (1967, “Fundamental Concepts in PLs”)  and  Cardelli/Wegner (1985, survey)

Generally:    Idea that an operation can be applied to
values of different types.   (‘poly’=‘many’)

Can be achieved in many ways..

polymorphism

parametric
Universal
(true)

inclusion

overloading
Ad hoc
(apparent)

coercion

Ad Hoc Polymorphism

Overloading (resolved at compile-time.  -- Overridden methods at run-time)

one name for different functions

only a conveniant syntax abbreviation

example: + :  int int            1 + 2
+ : real real         1.0 + 2.0

Coercion (= compile away subtyping by run-time coercions)

((real 1) + 1.0     or   1 + 1.0

Universal Polymorphism

Inclusion = Subtype   Polymorphism

One object belongs to many classes. 
E.g.,  a colored point 

can be seen as a point.

Parametric Polymorphism

Use type variables

f =  λx:int int.λy:int. x(x(y))

class CPt extends Pt { 
color c;
CPt(int x, int y, color c) { 
super(x,y);
this.c = c;

}
color getc () { return this.c; }

}
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Universal Polymorphism

Parametric Polymorphism

Use type variables

f =  λx:int int.λy:int. x(x(y))

bool bool   bool

Inclusion = Subtype   Polymorphism

One object belongs to many classes. 
E.g.,  a colored point 

can be seen as a point.

class CPt extends Pt { 
color c;
CPt(int x, int y, color c) { 
super(x,y);
this.c = c;

}
color getc () { return this.c; }

}

Universal Polymorphism

Parametric Polymorphism

Use  Type Variables

f =  λx: X .λy: Y . x(x(y))

Inclusion = Subtype   Polymorphism

One object belongs to many classes. 
E.g.,  a colored point 

can be seen as a point.

class CPt extends Pt { 
color c;
CPt(int x, int y, color c) { 
super(x,y);
this.c = c;

}
color getc () { return this.c; }

}

Universal Polymorphism

Parametric Polymorphism

Use  Type Variables

f =  λx: X .λy: Y . x(x(y))

Y Y             Y

“principal type” of     f = λx.λy. x(x(y))

Inclusion = Subtype   Polymorphism

One object belongs to many classes. 
E.g.,  a colored point 

can be seen as a point.

class CPt extends Pt { 
color c;
CPt(int x, int y, color c) { 
super(x,y);
this.c = c;

}
color getc () { return this.c; }

}

Parametric Polymorphism
How to find the principal type of  λx.λy. x(x(y))  ??

type check and accumulate constraints about the types of the variables
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Parametric Polymorphism
How to find the principal type of  λx:X.λy:Y. x(x(y))  ??

type check and accumulate constraints about the types of the variables

Type Variables

Type checking x(y) requires that  X = Y Z

Type checking x(x(y)) requires that  X = Z W

Parametric Polymorphism
How to find the principal type of  λx:X.λy:Y. x(x(y))  ??

type check and accumulate constraints about the types of variables

Type Parameters

Type checking x(y) requires that  X = Y Z

Type checking x(x(y)) requires that  X = Z W

Z = Y  and  X = Y Y   (and result type is Y)

This process is called type inference or type reconstruction.

Parametric Polymorphism
How to find the principal type of  λx:X.λy:Y. x(x(y))  ??

type check and accumulate constraints about the types of variables

Type Parameters

Type checking x(y) requires that        X = Y Z

Type checking x(x(y)) requires that  X = Z W

Z = Y  and  X = Y Y   (and result type is Y)

constraints

smallest solution

This process is called type inference or type reconstruction.

2. Type Inference (Reconstruction)

For simply typed lambda calculus  (with base types, Int and Bool)

A  Type Substitution is a mapping from type variables to types.

E.g.  σ = [X / bool, Y / X X]

then   σ X  =  bool    
and   σ Y  =  X X                (applied simultaneously)

Composition   σ ◦ γ “sigma after gamma”

(σ ◦ γ) S = σ(γ S)

σ ◦ γ :=   [   X / σ(T)    for X / T in γ, and
X / T        for X / T in σ with X ∉ dom(γ) ]
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2. Type Inference (Reconstruction)
Extend type substitution to  environments Γ and  terms t. 

Lemma. Type substitution preserves typing:

if   Γ ` t: T   then   σΓ ` σt : σT.

Proof.    By induction on the structure of term t.

Example.   x:X  ` λy:X int. y x : int is derivable.

Applying  σ = [ X / bool ] gives

x:bool ` λy:bool int. y x : int

which is also derivable.

2. Type Inference (Reconstruction)

Γ :  environment
t  :  term

A  solution for  (Γ, t) is a pair  (σ, T)  such that  σΓ ` σt : T

Example:  Γ =  f : X,  a : Y     and     t = f a

Then  ( [ X / Y int ], int )  

( [ X / int int, Y int ], int )

( [ X / Y Z], Z )

( [ X / Y Z, Z int ], Z )           are solutions of (Γ, t)

2. Type Inference (Reconstruction)

Γ :  environment
t  :  term

A  solution for  (Γ, t) is a pair  (σ, T)  such that  σΓ ` σt : T

Find three different solutions for  Γ = ∅ and 

t = λx:X. λy:Y. λz:Z. (x z) (y z)

2. Type Inference (Reconstruction)

Γ :  environment
t  :  term

A  solution for  (Γ, t) is a pair  (σ, T)  such that  σΓ ` σt : T

Constraint-Based Typing:

Given  (Γ, t)

Calculate  set of constraints that must be satisfied by ANY
solution for (Γ, t)
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2. Type Inference (Reconstruction)

true : Bool false : Bool t1 : Bool t2 : T t3: T

if t1 then t2 else t3 : Tzero : Nat

t1 : Nat
succ t1 : Nat

t1 : Nat
pred t1 : Nat

t1 : Nat
isZero t1 : Bool

Γ ` t1 : T ||U C      C’ = C ∪ { T = Nat }

Γ ` succ t1 : Nat ||U C’

2. Type Inference (Reconstruction)

true : Bool false : Bool t1 : Bool t2 : T t3: T

if t1 then t2 else t3 : Tzero : Nat

t1 : Nat
succ t1 : Nat

t1 : Nat
pred t1 : Nat

t1 : Nat
isZero t1 : Bool

Γ ` t1 : T ||U C      C’ = C ∪ { T = Nat }

Γ ` pred t1 : Nat ||U C’

2. Type Inference (Reconstruction)

true : Bool false : Bool t1 : Bool t2 : T t3: T

if t1 then t2 else t3 : Tzero : Nat

t1 : Nat
succ t1 : Nat

t1 : Nat
pred t1 : Nat

t1 : Nat
isZero t1 : Bool

Γ ` t1 : T ||U C      C’ = C ∪ { T = Nat }

Γ ` isZero t1 : Bool ||U C’

2. Type Inference (Reconstruction)

true : Bool false : Bool t1 : Bool t2 : T t3: T

if t1 then t2 else t3 : Tzero : Nat

t1 : Nat
succ t1 : Nat

t1 : Nat
pred t1 : Nat

t1 : Nat
isZero t1 : Bool

Γ ` t1 : T1 ||U1 C1               U1, U2, U3   pairwise disjoint
Γ ` t2 : T2 ||U2 C2             
Γ ` t3 : T3 ||U3 C3 C’ = C1 ∪ C2 ∪ C3 ∪  { T1 = Bool, T2 = T3 } 

Γ ` if t1  then t2 else t
3  

:  T2 ||U1 ∪ U2 ∪ U3 C’
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2. Type Inference (Reconstruction)

Γ, x:T1 ` t:T2

Γ ` λx:T1.t : T1 T2

Γ ` t1:T R Γ ` t2:T

Γ ` t1 t2 : R

x:T∈ Γ

Γ ` x : T

x:T∈ Γ

Γ ` x : T ||∅ { }

Γ, x:T1 ` t:T2 ||U C

Γ ` λx:T1.t : T1 T2 ||U C

Variable and Abstraction:

No new constraints!

2. Type Inference (Reconstruction)

Γ ` t1:T R Γ ` t2:T

Γ ` t1 t2 : R

x:T∈ Γ

Γ ` x : T

x:T∈ Γ

Γ ` x : T ||∅ { }

Γ, x:T1 ` t:T2 ||U C

Γ ` λx  .t : T1 T2 ||U C

Variable and Abstraction:

No new constraints!

BUT: we can leave out 
type annotations now!!

Γ, x:T1 ` t:T2

Γ ` λx:T1.t : T1 T2

2. Type Inference (Reconstruction)

Γ, x:T1 ` t:T2

Γ ` λx:T1.t : T1 T2

Γ ` t1:T R Γ ` t2:T

Γ ` t1 t2 : R

x:T∈ Γ

Γ ` x : T

Application:

Γ ` t1 : T1 ||U1 C1               X  fresh
Γ ` t2 : T2 ||U2 C2               C’ = C1 ∪ C2 ∪ { T1 = T2 X } 

Γ ` t1 t2 : X   ||U1 ∪ U2 ∪ {X}  C’

2. Type Inference (Reconstruction)
Suppose that    Γ ` t: S  || C

solution of  (Γ,t,S,C) is a pair  (σ, T) such that σ satisfies C and σS = T

How to find a solution to a set of constraints??

Unification [Robinson, 1965]

Basis to logic programming (e.g., used in Prolog)

Linear space algorithm  [Martelli,Montanari, 1984]
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3. Unification
More precisely:  syntactic equational unification

Define the set of terms
t  :=  x  |  f(t1, …, tn)   with  x∈ Var  and f ∈ FuncSymbols

Given an equation  s ≈ t  we look for substitution σ
such that    σs  ≈ σt 

(σ is called  unifier for s ≈ t)

σ1 more general than  σ2 iff     ∃ σ such that σ σ1 = σ2
Write  σ1 · σ2 (σ2 can be obtained from σ1!)

Principal Unifier of s ≈ t is unifier σ s.t. for all unifiers σ’:  σ · σ’

Unification Theorem:  s ≈ t has principal unifier, if it is unifiable!

3. Unification

Example:    f(x,y) ≈ f(a,y)

σ1 = [ x / a,  y / b ]  is a unifier  because   σ1 f(x,y) = σ1 f(a,y) 
f(a,b)   =   f(a,b)

σ2 = [ x / a ]  is  principal unifier because   σ2 f(x,y) = σ2 f(a,y)
f(a,y)         f(a,y)

σ1 · σ2 because   [ y / b ] σ2 = σ1

3. Unification by  Martelli, Montanari

t ≈ t, R | σ ⇒MM R | σ

f(...) ≈ g(...), R | σ ⇒MM ⊥ if f ≠ g or Arity(f) ≠ Arity(g)

f(s1,...,sn) ≈ f(t1,...,tn), R | σ ⇒MM s1 ≈ t1, ... , sn ≈ tn, R | σ

x ≈ t, R | σ ⇒MM [x / t] R | [x / t] σ if x ∉ var(t) 
(Self Occurence Check)

x ≈ t, R | σ ⇒MM ⊥ if x ∈ var(t)

t ≈ x, R | σ ⇒MM x ≈ t, R |  σ

∅ | σ ⇒MM σ

R = set of equations of the form  s ≈ t

Start with:   C  |  [ ]

set of constraints

empty substitution

3. Unification by  Martelli, Montanari

Examples:

C1  =  { X = int, Y = X X }

C2  =  { int int = X Y }

C3  =  { X Y = Y Z,  Z = U W }

C4  =  { int = int Y }

C5  =  { Y = int Y  }
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3. Unification by  Martelli, Montanari

Use  MM - unification algorithm on     C  |  [ ]

If this returns substitution σ, 

then   σS   is the principal type of t under Γ.

Suppose that    Γ ` t: S  || C

solution of  (Γ,t,S,C) is a pair  (σ, T) such that σ satisfies C and σS = T

4. Let-Polymorphism
Let us now try to use this parametric function:

let double = λx:Y Y. λy:Y. x(x(y)) in 
{

let a = double (λx:int. x+2) 2 in {
let b = double (λx:bool. x) false in {..}
}

}

4. Let-Polymorphism
Let us now try to use this parametric function:

let double = λx:Y Y. λy:Y. x(x(y)) in 
{

let a = double (λx:int. x+2) 2 in {
let b = double (λx:bool. x) false in {..}
}

}

Γ ` t1:T1 Γ, x:T1 ` t2:T2

Γ ` let x=t1 in t2 :T2

4. Let-Polymorphism
Let us now try to use this parametric function:

Can NOT be typed!   

constraints:  Y Y = int int AND   Y Y = bool bool

Γ ` t1:T1 Γ, x:T1 ` t2:T2

Γ ` let x=t1 in t2 :T2

let double = λx:Y Y. λy:Y. x(x(y)) in 
{

let a = double (λx:int. x+2) 2 in {
let b = double (λx:bool. x) false in {..}
}

}
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4. Let-Polymorphism
How can we ‘repair’ this?

Γ ` t1:T1 Γ, x:T1 ` t2:T2

Γ ` let x=t1 in t2 :T2

Should NOT be required
to be the same type T1!

4. Let-Polymorphism
How can we ‘repair’ this?

Γ ` t1:T1 Γ, x:T1 ` t2:T2

Γ ` let x=t1 in t2 :T2

Γ ` [x t1]t2:T2

Γ ` let x=t1 in t2 :T2

Should NOT be required
to be the same type T1!

substitute, and only type check the expanded term

4. Let-Polymorphism
How can we ‘repair’ this?

Γ ` t1:T1 Γ, x:T1 ` t2:T2

Γ ` let x=t1 in t2 :T2

Γ ` [x t1]t2:T2

Γ ` let x=t1 in t2 :T2

Should NOT be required
to be the same type T1!

substitute, and only type check the expanded term

… now it works … but, what if x does not occur in t2??

4. Let-Polymorphism
How can we ‘repair’ this?

Γ ` t1:T1 Γ, x:T1 ` t2:T2

Γ ` let x=t1 in t2 :T2

Γ ` [x t1]t2:T2       Γ ` t1:T1

Γ ` let x=t1 in t2 :T2

Should NOT be required
to be the same type T1!

substitute, and only type check the expanded term

… now it works … but, what if x does not occur in t2??

t1 should be typable!   Add  t1:T1 as premise.
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4. Let-Polymorphism
Γ ` t1:T1 Γ ` [x t1]t2:T2

Γ ` let x=t1 in t2 :T2

let double = λx.λy. x(x(y)) in 
{

let a = double (λx:int. x+2) 2 in {
let b = double (λx:bool. x) false in {..}
}

}

CAN be typed now!!  Because the new let rule creates two copies
of double, and the rule for abstraction assigns a  different type variable
to each one.

4. Let-Polymorphism
Γ ` t1:T1 Γ ` [x t1]t2:T2

Γ ` let x=t1 in t2 :T2

Problem with Let-Polymorphism:

If body of let contains many occ’s of x, 
then it will be checked many times!

Design a more clever algorithm

Good algorithms in practice appear “essentially linear” … but ….

4. Let-Polymorphism

let val f0 = fun x => (x,x) in

let val f1 = fun y => f0 (f0 y) in

let val f2 = fun y => f1 (f1 y) in

let val f3 = fun y => f2 (f2 y) in

let val f4 = fun y => f3 (f3 y) in

f4 (fun z => z)

..  is well-typed,   but takes a **LONG** time to type check!!

… this OCaml program ..  

4. Let-Polymorphism

let val f0 = 

fun x => (x,x) in

let val f1 = fun y => 

f0 (f0 y) in

let val f2 = fun y => 

f1 (f1 y) in

let val f3 = fun y => 

f2 (f2 y) in

let val f4 = fun y => 

f3 (f3 y) in

f4 (fun z => z)

end end end end end

∀X0:X0→X0*X0

∀X1:X1 →(X1*X1)*(X1*X1)

∀X2:X2→((((X2*X2)*(X2*X2))*

((X2*X2)*(X2*X2)))*

(((X2*X2)*(X2*X2))*

((X2*X2)*(X2*X2))))

(...)

Program Derived Type Constraints
0

2

4

8

16

Type Size
20

22

24

28

216
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4. Conclusion

Simple form of polymorphism

Introduced by  [ Milner 1978 ] in  ML

also known as Damas-Milner polymorphism

in ML, basis of powerful   generic libraries
(e.g., lists, arrays, trees, hash tables, …)

In simply-typed lambda-calculus, we can leave out ALL type annotations:

insert new type variables
do type reconstruction (using unification)

In this way, changing the let-rule, we obtain

Let-Polymorphism

4. Conclusion
With let-polymorphism, only let-bound values can be used
polymorphically. λ-bound values cannot be used polymorphically.

Example: let f = λg. ...g(1)...g(true)...
in  f(λx.x)

is not typable: when typechecking the definition of f,  
g has type  X (a fresh type variable) which is then constrained by 
X = int→Y and X = bool→Z

Functions cannot take polymorphic functions as parameters.
This is the key limitation of let-polymorphism. 

Can this be fixed/generalized??      YES:  System F  (next time)!
Polymorphic Lambda Calculus

4. Conclusion

Next time:   polymorphic lambda-calculus  (system F)
(15.12.)

polymorphic lambda-calculus + subtyping = 
“Bounded Quantification” (System “F-sub” F<: )

written assignment will be distributed 

(to be handed in by 22.12.)

22.12.:       adding generics to FJ   (= FGJ)

The programming assignment to be done by 21.01. is
about implementing FGJ!


