

Important:

The FJ Programming Assignment is only due

tomorrow, Dec. 9th, at 17:00.

→ send code to burak.emir@epfl.ch

Today .. into Polymorphism ..

- 1. What is Polymorphism?
- 2. Type Inference (Reconstruction)
- 3. Unification
- 4. Let-Polymorphism
- 5. Conclusion

A Critique of Statically Typed PLs

- → Types are obtrusive: they overwhelm the code
- → Types inhibit code re-use: one version for each type.

double_int = $\lambda x: int \rightarrow int. \lambda y: int. x(x(y))$ double_bool = $\lambda x: bool \rightarrow bool. \lambda y: bool x(x(y))$

2°
Ad Hoc Polymorphism
Overloading (resolved at compile-time Overridden methods at run-time)
ightarrow one name for different functions
→ only a conveniant syntax abbreviation
→ example: + : int → int 1 + 2 + : real → real 1.0 + 2.0
Coercion (= compile away subtyping by run-time coercions)
((real 1) + 1.0 or 1 + 1.0

 Inclusion = Subtype Polymorphism → One object belongs to many classes. E.g., a colored point can be seen as a point. Parametric Polymorphism → Lise type variables 	<pre>class CPt extends Pt { color c; CPt(int x, int y, color c) super(x,y); this.c = c; } color getc () { return this }</pre>
f = λx:int→int	.λy:int. x(x(y))

Parametric Polymorphism

How to find the principal type of $\lambda x: X. \lambda y: Y. x(x(y))$??

 \rightarrow type check and accumulate constraints about the types of the variables Type Variables

Type checking x(y) requires that $X = Y \rightarrow Z$

Type checking x(x(y)) requires that $X = Z \rightarrow W$

Parametric Polymorphism
How to find the principal type of $\lambda x: X. \lambda y: Y. x(x(y))$??
→ type check and accumulate constraints about the types of variables
Type Parameters
Type checking $x(y)$ requires that $X = Y \rightarrow Z$
Type checking $x(x(y))$ requires that $X = Z \rightarrow W$
→ $Z = Y$ and $X = Y \rightarrow Y$ (and result type is Y)
This process is called type inference or type reconstruction.

2. Type Inference (Reconstruction)
For simply typed lambda calculus (with base types, Int and Bool)
A Type Substitution is a mapping from type variables to types.
E.g. $\sigma = [X / \text{bool}, Y / X \rightarrow X]$
then $\sigma X = bool$ and $\sigma Y = X \rightarrow X$ (applied simultaneously)
Composition $\sigma \circ \gamma$ "sigma after gamma"
$(\sigma \circ \gamma) S = \sigma(\gamma S)$
$ \begin{array}{ll} \sigma \circ \gamma & \coloneqq & [X / \sigma(T) & \text{for } X / T & \text{in } \gamma, \text{ and} \\ X / T & \text{for } X / T & \text{in } \sigma \text{ with } X \not \in \text{dom}(\gamma)] \end{array} $

2. Type Inference (Reconstruction)

Extend type substitution to environments Γ and terms t.

Lemma. Type substitution preserves typing:

if $\Gamma \vdash t$: T then $\sigma\Gamma \vdash \sigma t : \sigma T$.

Proof. By induction on the structure of term t.

Example. x:X $\vdash \lambda y: X \rightarrow int. y x : int$ is derivable.

Applying $\sigma = [X / bool]$ gives

x:bool ⊢ λy:bool→int. y x : int

which is also derivable.

```
2. Type Inference (Reconstruction)

\Gamma: environment

t : term

A solution for (\Gamma, t) is a pair (\sigma, T) such that \sigma\Gamma \vdash \sigmat : T

Example: \Gamma = f: X, a: Y and t = fa

Then ([X/Y \rightarrow int], int)

([X/int \rightarrow int, Y \rightarrow int], int)

([X/Y \rightarrow Z], Z)

([X/Y \rightarrow Z, Z \rightarrow int], Z) are solutions of (\Gamma, t)
```

2. Type Inference (Reconstruction)

 Γ : environment t : term

A solution for (Γ , t) is a pair (σ , T) such that $\sigma\Gamma \vdash \sigma t$: T

Find three different solutions for $\Gamma = \emptyset$ and

 $t = \lambda x: X. \lambda y: Y. \lambda z: Z.$ (x z) (y z)

2. Type Inference (Reconstruction)

 Γ : environment t : term

A solution for (Γ , t) is a pair (σ , T) such that $\sigma\Gamma \vdash \sigma t$: T

Constraint-Based Typing:

Given (Γ , t)

Calculate set of constraints that must be satisfied by ANY solution for $(\Gamma,\,t)$

2. Type Inf	erence (Recor	nstruction)	
true:Bool	fal se : Bool	t_1 : Bool t_2 : T t_3 : T	
zero:Nat		if t_1 then t_2 el se t_3 : T	
$\frac{t_{1}: Nat}{succ t_{1}: Nat}$	t ₁ : Nat pred t ₁ : Nat	t ₁ : Nat i sZero t ₁ : Bool	
	Γ + t ₁ : T _U C C' = Γ + succ t ₁ : Nat	C ∪ { T = Nat } _U C'	

$\frac{\mathbf{x}:T\mathbf{\in}\Gamma}{\Gamma\vdash\mathbf{x}:T}$	$\frac{\Gamma, \mathbf{x}: T_1 \vdash t: T_2}{\Gamma \vdash \lambda \mathbf{x}: T_1 \cdot t: T_1 \rightarrow T_2}$	$\frac{\overrightarrow{\Gamma \vdash t_1: T \rightarrow R} \overrightarrow{\Gamma \vdash t_2: T}}{\overrightarrow{\Gamma \vdash t_1} t_2: R}$
Application:		
Г⊢t₁: Т₁ Г⊢t₂: Т₂	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$T_1 = T_2 X \}$
Γ⊢ t ₁	$t_2: X \mid \mid_{U1 \cup U2 \cup \{X\}} C'$	

3. Unification

 \rightarrow More precisely: syntactic equational unification

- → Define the set of terms $t \ := \ x \ \mid \ f(t_1, ..., t_n) \ \ \text{with} \ x \in \text{Var} \ \text{and} \ f \in \text{FuncSymbols}$
- → Given an equation $s \approx t$ we look for substitution σ such that $\sigma s \approx \sigma t$
- (σ is called **unifier** for s \approx t)

 $\begin{array}{ll} \sigma_1 \mbox{ more general than } \sigma_2 & \mbox{iff} & \exists \ \sigma \mbox{ such that } \sigma \ \sigma_1 = \sigma_2 \\ \mbox{Write } \ \sigma_1 \leq \sigma_2 & (\sigma_2 \mbox{ can be obtained from } \sigma_1!) \end{array}$

Unification Theorem: $s \approx t$ has principal unifier, if it is unifiable!

3. Unification

Example: $f(x,y) \approx f(a,y)$

→ $\sigma_1 = [x / a, y / b]$ is a unifier because $\sigma_1 f(x,y) = \sigma_1 f(a,y)$ f(a,b) = f(a,b)

→ $\sigma_2 = [x / a]$ is principal unifier because $\begin{array}{c} \sigma_2 f(x,y) = \sigma_2 f(a,y) \\ f(a,y) & f(a,y) \end{array}$

 $\sigma_1 \leq \sigma_2 ~\text{because}~\text{[y/b]}\sigma_2 = \sigma_1$

3. Unification by Martelli, Montanari

R = set of equations of the form $s \approx t$

3. Unification by Martelli, Montanari Examples: C1 = {X = int, Y = X → X} C2 = {int→int = X → Y} C3 = {X → Y = Y → Z, Z = U → W} C4 = {int = int → Y} C5 = {Y = int → Y}

3. Unification by Martelli, Montanari

Suppose that $\Gamma \vdash t: S \parallel C$

solution of (Γ ,t,S,C) is a pair (σ , T) such that σ satisfies C and σ S = T

 \rightarrow Use MM - unification algorithm on C | []

 \rightarrow If this returns substitution σ ,

then σS is the principal type of t under Γ .

4. Let-Polymorphism

... this OCaml program ..

let val f0 = fun x => (x, x) in
let val f1 = fun y => f0 (f0 y) in
let val f2 = fun y => f1 (f1 y) in
let val f3 = fun y => f2 (f2 y) in
let val f4 = fun y => f3 (f3 y) in
f4 (fun z => z)

.. is well-typed, but takes a **LONG** time to type check!!

4. Let-Polymorphism

Program	Derived Type	Type Size	Constraints
let val f0 =	∀X0:X0→X0*X0	2 ⁰	0
fun x => (x,x) in			
let val f1 = fun y =:	∀X1:X1 →(X1*X1)*(X1*X1)) 2 ²	2
f0 (f0 y) in			
let val f2 = fun y =:	> ∀X2:X2→((((X2*X2)*(X2*X	(2))* 2 ⁴	4
fl (fl y) in	((X2*X2)*(X2*X	<2)))*	
let val f3 = fun y =:	> (((X2*X2)*(X2*X	(2))* 2 ⁸	8
f2 (f2 y) in	((X2*X2)*(X2*X	<2))))	
let val f4 = fun y =:	>	2 ¹⁶	16
f3 (f3 y) in	()		
f4 (fun z => z)			
end end end end end			

4. Conclusion

In simply-typed lambda-calculus, we can leave out ALL type annotations:

→ insert new type variables
 → do type reconstruction (using unification)

In this way, changing the let-rule, we obtain

Let-Polymorphism

 \rightarrow Simple form of polymorphism

→ Introduced by [Milner 1978] in ML

ightarrow also known as Damas-Milner polymorphism

→ in ML, basis of powerful generic libraries (e.g., lists, arrays, trees, hash tables, ...)

4. Conclusion		
With let-polymorphism, only let-bound values can be used polymorphically. λ -bound values cannot be used polymorphically.		
Example: Let $f = \lambda g$ $g(1)$ $g(true)$ in $f(\lambda x, x)$		
is not typable: when typechecking the definition of f, g has type X (a fresh type variable) which is then constrained by X = int \rightarrow Y and X = bool \rightarrow Z		
Functions cannot take polymorphic functions as parameters. This is the key limitation of let-polymorphism.		
→ Can this be fixed/generalized?? YES: System F (next time)! Polymorphic Lambda Calculus		

