

Lecture 8 Dec. 8th, 2004 Sebastian Maneth

http://lampwww.epfl.ch/teaching/typeSystems/2004

Important:

The FJ Programming Assignment is only due

tomorrow, Dec. 9th, at 17:00.

→ send code to burak.emi r@epfl.ch

Today

.. into Polymorphism ..

- 1. What is Polymorphism?
- 2. Type Inference (Reconstruction)
- 3. Unification
- 4. Let-Polymorphism
- 5. Conclusion

NA.

A Critique of Statically Typed PLs

→ Types are obtrusive: they overwhelm the code

→ Types inhibit code re-use: one version for each type.

```
double_int = \lambda x: int\rightarrowint. \lambda y: int. x(x(y)) double_bool = \lambda x: bool \rightarrowbool . \lambda y: bool x(x(y))
```

A Critique of Statically Typed PLs

- → Types are obtrusive: they overwhelm the code
 - → Type Inference (Reconstruction)
- → Types inhibit code re-use: one version for each type.
 - → Polymorphism

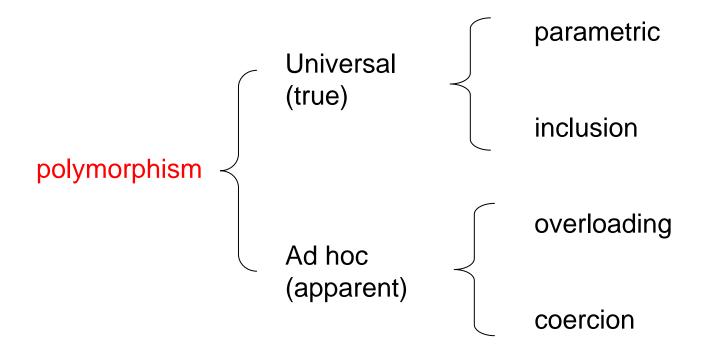
1. What is Polymorphism?

Generally: Idea that an operation can be applied to

values of different types. ('poly'='many')

Can be achieved in many ways..

According to Strachey (1967, "Fundamental Concepts in PLs") and Cardelli/Wegner (1985, survey)



Ad Hoc Polymorphism

Overloading (resolved at compile-time. -- Overridden methods at run-time)

- → one name for different functions
- → only a conveniant syntax abbreviation

```
\rightarrow example: + : int \rightarrow int 1 + 2 + : real \rightarrow real 1.0 + 2.0
```

Coercion (= compile away subtyping by run-time coercions)

$$((real 1) + 1.0 or 1 + 1.0$$

Universal Polymorphism

Inclusion = Subtype Polymorphism

→ One object belongs to many classes.
 E.g., a colored point
 can be seen as a point.

```
class CPt extends Pt {
  color c;
  CPt(int x, int y, color c) {
     super(x,y);
     this.c = c;
  }
  color getc () { return this.c; }
}
```

Parametric Polymorphism

→ Use type variables

```
f = \lambda x: int \rightarrow int. \lambda y: int. x(x(y))
```

M

Universal Polymorphism

Inclusion = Subtype Polymorphism

→ One object belongs to many classes.
 E.g., a colored point can be seen as a point.

```
class CPt extends Pt {
  color c;
  CPt(int x, int y, color c) {
     super(x,y);
     this.c = c;
  }
  color getc () { return this.c; }
}
```

Parametric Polymorphism

→ Use type variables

```
f = \lambda x: int \rightarrow int. \lambda y: int. x(x(y))
bool \rightarrow bool bool
```


Universal Polymorphism

Inclusion = Subtype Polymorphism

→ One object belongs to many classes.
 E.g., a colored point
 can be seen as a point.

```
class CPt extends Pt {
  color c;
  CPt(int x, int y, color c) {
     super(x,y);
     this.c = c;
  }
  color getc () { return this.c; }
}
```

Parametric Polymorphism

→ Use Type Variables

```
f = \lambda x: X . \lambda y: Y . x(x(y))
```

M

Universal Polymorphism

Inclusion = Subtype Polymorphism

→ One object belongs to many classes.
 E.g., a colored point
 can be seen as a point.

```
class CPt extends Pt {
  color c;
  CPt(int x, int y, color c) {
     super(x,y);
     this.c = c;
  }
  color getc () { return this.c; }
}
```

Parametric Polymorphism

→ Use Type Variables

$$f = \lambda x$$
: X λy : Y $X(x(y))$

"principal type" of $f = \lambda x$. λy . $X(x(y))$

M

Parametric Polymorphism

How to find the principal type of $\lambda x. \lambda y. x(x(y))$??

→ type check and accumulate constraints about the types of the variables

Parametric Polymorphism

How to find the principal type of $\lambda x: X. \lambda y: Y. x(x(y))$??

→ type check and accumulate constraints about the types of the variables

Type Variables

Type checking x(y) requires that $X = Y \rightarrow Z$

Type checking x(x(y)) requires that $X = Z \rightarrow W$

M

Parametric Polymorphism

How to find the principal type of $\lambda x: X. \lambda y: Y. x(x(y))$??

→ type check and accumulate constraints about the <u>types of variables</u>
Type Parameters

Type checking x(y) requires that $X = Y \rightarrow Z$

Type checking x(x(y)) requires that $X = Z \rightarrow W$

 \rightarrow Z = Y and X = Y \rightarrow Y (and result type is Y)

This process is called type inference or type reconstruction.

M

Parametric Polymorphism

How to find the principal type of $\lambda x: X. \lambda y: Y. x(x(y))$??

→ type check and accumulate constraints about the types of variables

Type Parameters

Type checking x(y) requires that

Type checking x(x(y)) requires that $X = Z \rightarrow W$

 $X = Y \rightarrow Z$ $t \quad X = Z \rightarrow W$

constraints

$$\rightarrow$$
 Z = Y and $X = Y \rightarrow Y$ (and result type is Y)

smallest solution

This process is called type inference or type reconstruction.

For simply typed lambda calculus (with base types, Int and Bool)

A Type Substitution is a mapping from type variables to types.

E.g.
$$\sigma = [X / bool, Y / X \rightarrow X]$$

then $\sigma X = bool$
and $\sigma Y = X \rightarrow X$ (applied simultaneously)

Composition $\sigma \circ \gamma$ "sigma after gamma"

$$(\sigma \circ \gamma) S = \sigma(\gamma S)$$

$$\sigma \circ \gamma := [X/\sigma(T) \text{ for } X/T \text{ in } \gamma, \text{ and } X/T \text{ for } X/T \text{ in } \sigma \text{ with } X \notin \text{dom}(\gamma)]$$

Extend type substitution to environments Γ and terms t.

Lemma. Type substitution preserves typing:

if
$$\Gamma \vdash t$$
: T then $\sigma \Gamma \vdash \sigma t : \sigma T$.

Proof. By induction on the structure of term t.

```
Example. x:X \vdash \lambda y:X \rightarrow int is derivable.
```

Applying
$$\sigma = [X / bool]$$
 gives

x:bool
$$\vdash \lambda y$$
:bool \rightarrow int. y x : int

which is also derivable.

М

2. Type Inference (Reconstruction)

```
\Gamma : environment t : term A solution for ($\Gamma$, t) is a pair ($\sigma$, $\T$) such that $\sigma\Gamma \vdash \sigma t : $T$
```

```
Example: \Gamma = f : X, a : Y and t = f a

Then ([X/Y \rightarrow int], int)
([X/int \rightarrow int, Y \rightarrow int], int)
([X/Y \rightarrow Z], Z)
([X/Y \rightarrow Z, Z \rightarrow int], Z) are solutions of (\Gamma, t)
```

M

2. Type Inference (Reconstruction)

 Γ : environment

t : term

A **solution for** (Γ, t) is a pair (σ, T) such that $\sigma\Gamma \vdash \sigma t : T$

Find three different solutions for $\Gamma = \emptyset$ and

$$t = \lambda x: X. \quad \lambda y: Y. \quad \lambda z: Z. \quad (x z) \quad (y z)$$

M

2. Type Inference (Reconstruction)

 Γ : environment

t : term

A solution for (Γ, t) is a pair (σ, T) such that $\sigma\Gamma \vdash \sigma t : T$

Constraint-Based Typing:

Given (Γ, t)

Calculate set of constraints that must be satisfied by ANY solution for (Γ, t)

true: Bool false: Bool t_1 : Bool t_2 : T t_3 : T

zero: Nat if t_1 then t_2 el se t_3 : T

 $\Gamma \vdash t_1 : T \parallel_U C \qquad C' = C \cup \{ T = Nat \}$ $\Gamma \vdash succ t_1 : Nat \parallel_U C'$

true : Bool fal se : Bool $\underline{t_1}$: Bool $\underline{t_2}$: T $\underline{t_3}$: T $\underline{t_1}$: Bool $\underline{t_2}$: T $\underline{t_3}$: T

 $\frac{t_1 : Nat}{succ t_1 : Nat}$

t₁: Nat pred t₁: Nat

 $\frac{t_1 : Nat}{i \ sZero \ t_1 : Bool}$

$$\frac{\Gamma \vdash t_1 : T \mid\mid_U C \quad C' = C \cup \{ T = Nat \}}{\Gamma \vdash pred t_1 : Nat \mid\mid_U C'}$$

true : Bool fal se : Bool $\underline{t_1}$: Bool $\underline{t_2}$: T $\underline{t_3}$: T $\underline{t_1}$: Bool $\underline{t_2}$: T $\underline{t_3}$: T

 $\frac{t_1 : Nat}{succ \ t_1 : Nat} \qquad \frac{t_1 : Nat}{pred \ t_1 : Nat}$

t₁: Nat i sZero t₁: Bool

$$\Gamma \vdash t_1 : T \parallel_U C$$
 $C' = C \cup \{ T = Nat \}$
 $\Gamma \vdash i \text{ sZero } t_1 : Bool \parallel_U C'$

true: Bool false: Bool

zero: Nat

 t_1 : Nat t_1 : Nat

succ t_1 : Nat pred t_1 : Nat

 t_1 : Bool t_2 : T t_3 : T

if t_1 then t_2 else t_3 : T

t₁: Nat

isZerot₁: Bool

 $\Gamma \vdash t_1 : T_1 \mid_{U_1} C_1$ U1, U2, U3 pairwise disjoint

 $\Gamma \vdash \mathsf{t}_2 : \mathsf{T}_2 \mathbin{||_{\mathsf{U}2}} \mathsf{C}_2$

 $\Gamma \vdash t_3 : T_3 \mid_{U_3} C_3$ $C' = C_1 \cup C_2 \cup C_3 \cup \{ T_1 = Bool, T_2 = T_3 \}$

 $\Gamma \vdash i f t_1 \text{ then } t_2 \text{ else } t_3 : T_2 \parallel_{U1 \cup U2 \cup U3} C'$

$$\frac{\Gamma \vdash \mathsf{t}_1 \colon \mathsf{T} \to \mathsf{R} \qquad \Gamma \vdash \mathsf{t}_2 \colon \mathsf{T}}{\Gamma \vdash \mathsf{t}_1 \quad \mathsf{t}_2 \colon \mathsf{R}}$$

$$\frac{\mathsf{x}\colon\mathsf{T}\!\in\!\Gamma}{\Gamma\vdash\mathsf{x}\colon\mathsf{T}\;\mid\mid_{\varnothing}\{\,\}}$$

Variable and Abstraction:

No new constraints!

$$\frac{\Gamma, x: T_1 \vdash t: T_2 \mid \mid_U C}{\Gamma \vdash \lambda x: T_1. t: T_1 \rightarrow T_2 \mid \mid_U C}$$

$$\frac{\mathbf{x} \colon \mathsf{T} \in \Gamma}{\Gamma \vdash \mathbf{x} \colon \mathsf{T}} \qquad \frac{\Gamma, \, \mathbf{x} \colon \mathsf{T}_1 \, \vdash \, \mathsf{t} \colon \mathsf{T}_2}{\Gamma \vdash \lambda \mathbf{x} \colon \mathsf{T}_1. \, \mathsf{t} \colon \, \mathsf{T}_1 \! \to \! \mathsf{T}_2}$$

$$\frac{\Gamma \vdash \mathsf{t}_1 \colon \mathsf{T} \to \mathsf{R} \qquad \Gamma \vdash \mathsf{t}_2 \colon \mathsf{T}}{\Gamma \vdash \mathsf{t}_1 \quad \mathsf{t}_2 \colon \mathsf{R}}$$

$$\frac{\mathsf{x}\colon\mathsf{T}\!\in\Gamma}{\Gamma\vdash\mathsf{x}\colon\mathsf{T}\;\mid\mid_{\varnothing}\{\,\}}$$

$$\frac{\Gamma, x: T_1 \vdash t: T_2 \mid \mid_U C}{\Gamma \vdash \lambda x \quad . \ t: \ T_1 \rightarrow T_2 \mid \mid_U C}$$

BUT: we can leave out type annotations now!!

$$\frac{x \colon T \in \Gamma}{\Gamma \vdash x \colon T} \qquad \frac{\Gamma, \ x \colon T_1 \ \vdash \ t \colon T_2}{\Gamma \vdash \lambda x \colon T_1. \ t \colon T_1 \rightarrow T_2}$$

$$\frac{\Gamma \vdash t_1 \colon T \rightarrow R \qquad \Gamma \vdash t_2 \colon T}{\Gamma \vdash t_1 \quad t_2 \colon R}$$

Application:

$$\begin{array}{ll} \Gamma \vdash t_1 : T_1 \mid_{U_1} C_1 & X \text{ fresh} \\ \Gamma \vdash t_2 : T_2 \mid_{U_2} C_2 & C' = C_1 \cup C_2 \cup \ \{ \ T_1 = T_2 \rightarrow X \ \} \end{array}$$

$$\Gamma \vdash t_1 t_2 : X \parallel_{U1 \cup U2 \cup \{X\}} C'$$

Suppose that $\Gamma \vdash t: S \parallel C$

solution of (\Gamma,t,S,C) is a pair (σ , T) such that σ satisfies C and σ S = T

How to find a solution to a set of constraints??

Unification [Robinson, 1965]

- → Basis to logic programming (e.g., used in Prolog)
- → Linear space algorithm [Martelli, Montanari, 1984]

3. Unification

- → More precisely: syntactic equational unification
- → Define the set of terms $t := x \mid f(t_1, ..., t_n)$ with $x \in Var$ and $f \in FuncSymbols$
- \rightarrow Given an equation $s \approx t$ we look for substitution σ such that $\sigma s \approx \sigma t$

(σ is called **unifier** for $s \approx t$)

 σ_1 more general than σ_2 iff $\exists \sigma$ such that $\sigma \sigma_1 = \sigma_2$ Write $\sigma_1 \leq \sigma_2$ (σ_2 can be obtained from σ_1 !)

Principal Unifier of s \approx t is unifier σ s.t. for all unifiers σ' : $\sigma \leq \sigma'$

Unification Theorem: $s \approx t$ has principal unifier, if it is unifiable!

3. Unification

Example: $f(x,y) \approx f(a,y)$

$$\rightarrow \sigma_1 = [x/a, y/b]$$
 is a unifier because $\sigma_1 f(x,y) = \sigma_1 f(a,y)$
 $f(a,b) = f(a,b)$

$$\Rightarrow$$
 $\sigma_2 = [x/a]$ is principal unifier because $\sigma_2 f(x,y) = \sigma_2 f(a,y)$ $f(a,y)$

$$\sigma_1 \le \sigma_2$$
 because [y/b] $\sigma_2 = \sigma_1$

3. Unification by Martelli, Montanari

R = set of equations of the form $s \approx t$

$$\varnothing \mid \sigma \Rightarrow_{\mathsf{MM}} \sigma$$

set of constraints

Start with: C | []

empty substitution

3. Unification by Martelli, Montanari

Examples:

```
C1 = { X = int, Y = X\rightarrowX }

C2 = { int\rightarrowint = X \rightarrow Y }

C3 = { X\rightarrowY = Y\rightarrowZ, Z = U\rightarrowW }

C4 = { int = int\rightarrowY }

C5 = { Y = int\rightarrowY }
```

3. Unification by Martelli, Montanari

```
Suppose that \Gamma \vdash t: S \parallel C solution of (\Gamma,t,S,C) is a pair (\sigma,T) such that \sigma satisfies C and \sigma S = T
```

- → Use MM unification algorithm on C | []
- \rightarrow If this returns substitution σ ,

then σS is the principal type of t under Γ .

Let us now try to use this parametric function:

```
let double = \lambda x: Y \rightarrow Y. \lambda y: Y. x(x(y)) in {
    let a = double (\lambda x: int. x+2) 2 in {
    let b = double (\lambda x: bool. x) false in {..}
    }
}
```

Let us now try to use this parametric function:

```
let double = \lambda x: Y \rightarrow Y. \lambda y: Y. x(x(y)) in {
  let a = double \ (\lambda x: int. \ x+2) \ 2 \ in \ \{
  let b = double \ (\lambda x: bool. \ x) \ false in \ \{...\}
  }
}
\frac{\Gamma \vdash t_1: T_1 \qquad \Gamma, x: T_1 \vdash t_2: T_2}{\Gamma \vdash let \ x=t_1 \ in \ t_2: T_2}
```

Let us now try to use this parametric function:

```
let double = \lambda x: Y \rightarrow Y. \lambda y: Y. x(x(y)) in {
  let a = double (\lambda x: int. x+2) \ 2 in \{ let b = double (\lambda x: bool. x) false in <math>\{...\}
}

\Gamma \vdash t_1: T_1 \qquad \Gamma, x: T_1 \vdash t_2: T_2
\Gamma \vdash let x=t_1 in t_2: T_2
```

Can NOT be typed!

```
constraints: Y \rightarrow Y = int \rightarrow int AND Y \rightarrow Y = bool \rightarrow bool
```

M

4. Let-Polymorphism

Should NOT be required to be the same type $T_1!$ $\frac{\Gamma \vdash t_1 : T_1}{\Gamma \vdash \text{let } x=t_1 \text{ in } t_2 : T_2}$

Should NOT be required to be the same type $T_1!$ $\frac{\Gamma \vdash t_1 : T_1}{\Gamma \vdash t_2 : T_2} = \frac{\Gamma \vdash t_1 : T_1}{\Gamma \vdash t_2 : T_2}$

→ substitute, and only type check the expanded term

$$\frac{\Gamma \vdash [x \rightarrow t_1] t_2 : T_2}{\Gamma \vdash let \ x = t_1 \ in \ t_2 : T_2}$$

Should NOT be required to be the same type $T_1!$ $\frac{\Gamma \vdash t_1 : T_1}{\Gamma \vdash t_2 : T_2} = \frac{\Gamma \vdash t_1 : T_1}{\Gamma \vdash t_2 : T_2}$

→ substitute, and only type check the expanded term

$$\frac{\Gamma \vdash [x \rightarrow t_1] t_2 : T_2}{\Gamma \vdash let \ x = t_1 \ in \ t_2 : T_2}$$

... now it works ... but, what if x does not occur in t_2 ??

Should NOT be required to be the same type $T_1!$ $\frac{\Gamma \vdash t_1 : T_1}{\Gamma \vdash \text{let } x=t_1 \text{ in } t_2 : T_2}$

→ substitute, and only type check the expanded term

$$\frac{\Gamma \vdash [x \rightarrow t_1] t_2 : T_2 \qquad \Gamma \vdash t_1 : T_1}{\Gamma \vdash let \ x = t_1 \ in \ t_2 : T_2}$$

... now it works ... but, what if x does not occur in t_2 ??

 \rightarrow t₁ should be typable! Add t₁:T₁ as premise.

$$\frac{\Gamma \vdash t_1: T_1 \qquad \Gamma \vdash [x \rightarrow t_1] t_2: T_2}{\Gamma \vdash let \ x=t_1 \ in \ t_2: T_2}$$

```
let double = \lambda x. \lambda y. x(x(y)) in {
  let a = double (\lambda x:int. x+2) 2 in {
  let b = double (\lambda x:bool. x) false in {..}
  }
}
```

CAN be typed now!! Because the new let rule creates two copies of double, and the rule for abstraction assigns a *different* type variable to each one.

$$\frac{\Gamma \vdash t_1: T_1 \qquad \Gamma \vdash [x \rightarrow t_1] t_2: T_2}{\Gamma \vdash let \ x=t_1 \ in \ t_2: T_2}$$

Problem with Let-Polymorphism:

If body of let contains many occ's of x, then it will be checked many times!

→ Design a more clever algorithm

Good algorithms in practice appear "essentially linear" ... but

... this OCaml program ..

```
let val f0 = fun x => (x, x) in
let val f1 = fun y => f0 (f0 y) in
let val f2 = fun y => f1 (f1 y) in
let val f3 = fun y => f2 (f2 y) in
let val f4 = fun y => f3 (f3 y) in
f4 (fun z => z)
```

.. is well-typed, but takes a **LONG** time to type check!!

Program	Derived Type	Type Size	Constraints
let val f0 =	∀X0:X0→X0*X0	20	0
fun $x \Rightarrow (x,x)$ in			
let val f1 = fun y =>	∀X1:X1 →(X1*X1)*(X1*X1)	2 ²	2
f0 (f0 y) in			
let val f2 = fun y =>	∀X2:X2→((((X2*X2)*(X2*X	2))* 24	4
f1 (f1 y) in	((X2*X2)*(X2*X	(2)))*	
let val f3 = fun y =>	(((X2*X2)*(X2*X	2))* 28	8
f2 (f2 y) in	((X2*X2)*(X2*X	(2))))	
let val f4 = fun y =>		2 ¹⁶	16
f3 (f3 y) in	()		
f4 (fun z => z)			
end end end end			

4.0

4. Conclusion

In simply-typed lambda-calculus, we can leave out ALL type annotations:

- → insert new type variables
- → do type reconstruction (using unification)

In this way, changing the let-rule, we obtain

Let-Polymorphism

- → Simple form of polymorphism
- → Introduced by [Milner 1978] in ML
- → also known as Damas-Milner polymorphism
- → in ML, basis of powerful *generic libraries* (e.g., lists, arrays, trees, hash tables, ...)

4. Conclusion

With let-polymorphism, only let-bound values can be used polymorphically. λ -bound values cannot be used polymorphically.

Example: Let
$$f = \lambda g$$
. ... $g(1)$... $g(true)$... in $f(\lambda x. x)$

is not typable: when typechecking the definition of f, g has type X (a fresh type variable) which is then constrained by $X = int \rightarrow Y$ and $X = bool \rightarrow Z$

Functions cannot take polymorphic functions as parameters. This is the key limitation of let-polymorphism.

→ Can this be fixed/generalized?? YES: System F (next time)!

Polymorphic Lambda Calculus

4. Conclusion

```
Next time: → polymorphic lambda-calculus (system F)

(15.12.)

→ polymorphic lambda-calculus + subtyping =

"Bounded Quantification" (System "F-sub" F<sub><:</sub>)

→ written assignment will be distributed

(to be handed in by 22.12.)
```

22.12.: \rightarrow adding generics to FJ (= FGJ)

The programming assignment to be done by 21.01. is about implementing FGJ!