Type Systems

Lecture 8 Dec. 8th, 2004
Sebastian Maneth

http://lampwww.epfl.ch/teaching/typeSystems/2004

Important:

The FJ Programming Assignment is only due

tomorrow, Dec. 9th, at 17:00.

- send code to burak.emir@epfl.ch

"

Today .. Into Polymorphism ..

1. What is Polymorphism?

2. Type Inference (Reconstruction)
3. Unification

4. Let-Polymorphism

5. Conclusion

" JEE
A Critique of Statically Typed PLs

- Types are obtrusive: they overwhelm the code

- Types inhibit code re-use: one version for each type.

double_int = Ax:zint=>iInt.Ay:-int. x(X(y))
double_bool = Ax:bool->bool.Ay:bool x(x(y))

" JEE—
A Critique of Statically Typed PLs

- Types are obtrusive: they overwhelm the code
=> Type Inference (Reconstruction)
- Types inhibit code re-use: one version for each type.

=> Polymorphism

"
1. What is Polymorphism?

Generally: Idea that an operation can be applied to
values of different types. (‘poly’=‘many’)

Can be achieved in many ways..
According to Strachey (1967, “Fundamental Concepts in PLs”) and Cardelli/Wegner (1985, survey)

(" parametric
~ Universal
(true)
Inclusion
N—
polymorphism <
- .
overloading
. Ad hoc
(apparent)
coercion

" J
Ad Hoc Polymorphism
Overloading (resolved at compile-time. -- Overridden methods at run-time)

- one name for different functions

—> only a conveniant syntax abbreviation

> example: 4 - jnt > int
+ - real - real 1.

o
+ o+
N N

Coercion (= compile away subtyping by run-time coercions)

((real 1) + 1.0 or 1+ 1.0

=
Universal Polymorphism

Inclusion = Subtype Polymorphism class CPt extends Pt {

color c;

- One object belongs to many classes. CPt(i”t(X’ ;”t y, color ¢) {
. super(x,y),;
E.g., acolored point | this.c = c-
can be seen as a point. }

color getc () { return this.c; }
by

Parametric Polymorphism

- Use type variables

f = MXx:int>int.ay:int. x(x(y))

=
Universal Polymorphism

Inclusion = Subtype Polymorphism class CPt extends Pt {

color c;

- One object belongs to many classes. CPt(i”t(X’ ;”t y, color ¢) {
. super(x,y),;
E.g., acolored point | this.c = c-
can be seen as a point. }

color getc () { return this.c; }
by

Parametric Polymorphism

- Use type variables

f = x:int2>int.dy:int. x(xX(y))
bool—->bool bool

=
Universal Polymorphism

Inclusion = Subtype Polymorphism

- One object belongs to many classes.

E.g., acolored point
can be seen as a point.

Parametric Polymorphism

- Use Type Variables

f = AX: X

Ay

class CPt extends Pt {

}

color c;
CPt(int x, Int y, color c) {

super(X,Y);
this.c = c;

+
color getc () { return this.c; }

Y . x(X(yY))

=
Universal Polymorphism

Inclusion = Subtype Polymorphism
- One object belongs to many classes.

E.g., acolored point
can be seen as a point.

Parametric Polymorphism

- Use Type Variables

f = AX: X

class CPt extends Pt {

color c;

CPt(int x, Int y, color c) {
super(X,Y);
this.c = c;

+

color getc () { return this.c; }

}

Ay Y o xX(X(Y))

Y2

T

“principal type” of

f = AXx.Ay. x(xX(Y))

Parametric Polymorphism

How to find the principal type of AX.Ay. X(X(y)) 7?7

- type check and accumulate constraints about the types of the variables

=
Parametric Polymorphism

How to find the principal type of AXZX.Ay:Y. x(xX(y)) ??

—> type check and accumulate constraints about the types of the-vartabtes
Type Variables

Type checking x(y) requiresthat X=Y 2> Z

Type checking x(x(y)) requires that X =7 > W

" J
Parametric Polymorphism

How to find the principal type of AXZX.Ay:Y. x(xX(y)) ??

—> type check and accumulate constraints about the types ofvatiabiies

Type Parameters

Type checking x(y) requiresthat X=Y 2> Z

Type checking x(x(y)) requiresthat X=Z-> W

=2 Z=Y and X=Y =2 Y (andresulttypeisY)

This process is called type inference or type reconstruction.

Parametric Polymorphism

How to find the principal type of AXZX.Ay:Y. x(xX(y)) ??

—> type check and accumulate constraints about the types ofvatiabiies

Type checking x(y) requires that X=NY 2/

Type checking x(x(y)) requiresthat| X =2 > W

= Z=Y and

X=Y=2>Y

Type Parameters

constraints

(and result type is Y)

smallest solution

This process is called type inference or type reconstruction.

" J
2. Type Inference (Reconstruction)

For simply typed lambda calculus (with base types, Int and Bool)

A Type Substitution is a mapping from type variables to types.
E.g. o =[X/bool, Y/ X>X]

then o X = bool
and oY = X2 X (applied simultaneously)

Composition ooy “sigma after gamma”
(coy)S=0o(yS)

coy = [X/o(T) forX/Tiny, and
XIT for X/ T in o with X ¢ dom(y)]

" A
2. Type Inference (Reconstruction)

Extend type substitution to environments I' and terms t.

Lemma. Type substitution preserves typing:

f 't T then ol Fot:oT.

Proof. By induction on the structure of term t.

Example. x:X FAy:X=2>int. y x:int is derivable.
Applying o =[X/ bool] gives
X:bool F Ay:bool=2>int. y x : int

which is also derivable.

2. Type Inference (Reconstruction)

I': environment
t : term

A solution for (I', t) isapair (o, T) suchthat cI'Fot: T

Example: T' = f: X, a:Y and t=fa

Then ([X/Y =2 int], int)
([X/int=>int, Y 2 int], int)
([XITY=2>Z],2)

([X/Y>Z,Z>int], Z) are solutions of (T, t)

2. Type Inference (Reconstruction)

I': environment
t : term

A solution for (I',t) isapair (o, T) suchthat cI'-ot: T

Find three different solutions for ' = & and

t = AX:X. AyIY. Az:Z. (X 2) (y 2)

2. Type Inference (Reconstruction)

I': environment
t : term

A solution for (I',t) isapair (o, T) suchthat cI'-ot: T

Constraint-Based Typing:
Given (T, t)

Calculate set of constraints that must be satisfied by ANY
solution for (T, t)

2. Type Inference (Reconstruction)

true : Bool false : Bool t,:Bool t,:T t;:T
zero * Nat 1Tt thent,elset;: T
t; : Nat t, : Nat t, : Nat
succ t, : Nat predt, : Nat i1sZerot, : Bool

rt:T|,C C=CuU{T=Nat}

I'succt, :Nat |[, C

2. Type Inference (Reconstruction)

true : Bool

zero : Nat

t, : Nat
succ t; : Nat

false : Bool t,:Bool t,:T tiT

1Tt thent,elset;: T

t, : Nat t; : Nat
predt, : Nat i1sZerot, : Bool
't :T||y,C C=CU{T=Nat}

I'Fpredt,:Nat |[, C

2. Type Inference (Reconstruction)

true : Bool false : Bool t,:Bool t,:T t;:T
zero * Nat 1Tt thent,elset;: T
t, : Nat t, : Nat t, : Nat
succ t, : Nat predt, : Nat isZerot, : Bool

rt:T|,C C=CuU{T=Nat}

' isZerot, : Bool ||, C

2. Type Inference (Reconstruction)

true : Bool false : Bool L Bool e o]
zero * Nat 1k thent else
t, : Nat t, : Nat t, : Nat
succ t, : Nat predt, : Nat i1sZerot, : Bool
-t T,y Cy U1, U2, U3 pairwise disjoint
FEGToly, G
Lt Tslys Cs C=C,uUuC,UuCyU {T,=Bool, T,=T;}

[Hafty thentelset @ T, |lyzuuouus ©

" J
2. Type Inference (Reconstruction)

x:Tel Foxal = ke '€, T=>R -6, T
. e e g I'Ft, t,:R
X:Tel
Variable and Abstraction:
I'Ex:-T |,{}

No new constraints!

[yx:T, F t:T, ||, C

[FAX:T,- €T, 2T, ||, C

2. Type Inference (Reconstruction)

x:lel 1 xtF, | &]

x| [T t T 5T

X:Tel
I'Ex:-T |,{}

[yx:T, F t:T, ||, C

' .tz T,2T,|,C

'€, T=>R -6, T

'€, £ IR

Variable and Abstraction:

No new constraints!

BUT: we can leave out
type annotations now!!

2. Type Inference (Reconstruction)

xX:Tel [y xZT, F €:T, =R F=F
Ex:T [FAX:T,.t - T,>T, It t R
Application:

CEt Tl G X fresh

THt,:T,]l,, C, C=C,UC,U{T,=T,> X}

FE 4 60X llpuuup ©

" J
2. Type Inference (Reconstruction)

Supposethat I't:S || C

solution of (I',t,5,C) isa pair (o, T) such that ¢ satisfies CandcS =T

How to find a solution to a set of constraints??

Unification [Robinson, 1965]
- Basis to logic programming (e.g., used in Prolog)

- Linear space algorithm [Martelli,Montanari, 1984]

o
3. Unification

- More precisely: syntactic equational unification

- Define the set of terms
t = x| f(t, ..., t,) with xe Var and f € FuncSymbols

= Given an equation s ~t we look for substitution ¢
suchthat os =~ ot

(o is called unifier for s = t)

o, more generalthan ¢, Iff dosuchthatco, =0,
Write 6, <o, (o, can be obtained from c,!)

Principal Unifier of s ~ tis unifier ¢ s.t. for all unifiers ¢’ o <o’

Unification Theorem: s =t has principal unifier, if it is unifiable!

3. Unification

Example: f(x,y) = f(a,y)

> o,=[x/a, y/b] is aunifier because o, f(x,y) = o, f(a,y)
f(a,b) = f(a,b)
> o,=[x/a] is principal unifier because o, f(x,y) = o, f(a,y)

f(ay) f(ay)

c, <o, because [y/b]o,=0,

" J
3. Unification by Martelli, Montanari

R = set of equations of the form s =~ t

t~t,R|oc =,yR]|o
f(...)=9(...), R| o = L if f=g orArity(f) = Arity(g)

f(syy...Sp) = f(ty,...1), Rl o =>yuS.=t, .., S, R| o

X=t,R|oc =y [X/t]R|[X/t]lc ifx ¢ var(t)
(Self Occurence Check)
X=t,R|oc =,y L Iifxevar(t)

t=X,R|oc =>yyX=t,R| o

g|lo=>yuo set of constraints

/

Start with: C | []
N

empty substitution

3. Unification by Martelli, Montanari

Examples:

Cl = {X=int, Y =X>X}

C2 = {int2int=X>Y}

C3 ={X22Y=Y>Z, Z=U>W}
C4 = {int=int>Y }

C5 = {Y=int>Y }

3. Unification by Martelli, Montanari

Supposethat T'Ht:S ||C

solution of (I',t,5,C) is a pair (o, T) such that ¢ satisfies Cand cS =T

- Use MM - unification algorithmon C | []

- If this returns substitution o,

then &S s the principal type of t under I'.

4. Let-Polymorphism

Let us now try to use this parametric function:

let double = AX:Y=2Y. Ay:Y. x(X(y)) 1In

{
let a = double (Ax:int. x+2) 2 iIn {
let b = double (Ax:bool. x) false iIn {..}
+

}

4. Let-Polymorphism

Let us now try to use this parametric function:

let double = AX:Y=2Y. Ay:Y. x(X(y)) 1In

{
let a = double (Ax:int. x+2) 2 iIn {
let b = double (Ax:bool. x) false iIn {..}
+

+

I'Et,:T, [x:T; F&,:T,

['F let x=t; In t, =T,

4. Let-Polymorphism

Let us now try to use this parametric function:

let double = AX:Y=2Y. AyY. x(X(y)) 1In

{
let a = double (Ax:int. x+2) 2 iIn {
let b = double (Ax:bool. x) false iIn {..}
+

+

I'Et,:T, [x:T; F&,:T,

['F let x=t; In t, =T,

Can NOT be typed!

constraints: Y=Y = int=>1nt AND Y=Y = bool->bool

4. Let-Polymorphism
Should NOT be required

How can we ‘repair’ this? to be the same type T,!

Fl—tl® F,x@l— LT,

['F let x=t; In t, =T,

4. Let-Polymorphism
Should NOT be required

How can we ‘repair’ this? to be the same type T,!

Fl—tl® 1“,X€Dl—t2:T2

['F let x=t; In t, =T,

—> substitute, and only type check the expanded term

' F X2t]t T,

['F let x=t, In t, :T,

4. Let-Polymorphism
Should NOT be required

How can we ‘repair’ this? to be the same type T,!

Fl—tl® 1“,X€D|—t2:T2

['F let x=t; In t, =T,

—> substitute, and only type check the expanded term

' F X2t]t T,

['F let x=t, In t, :T,

... how itworks ... but, what if x does not occur in t,??

4. Let-Polymorphism
Should NOT be required

How can we ‘repair’ this? to be the same type T,!

Fl—tl® 1“,X€D|—t2:T2

['F let x=t; In t, =T,

—> substitute, and only type check the expanded term

[F X2t]t,:T, ['F1t,:T,

['F let x=t, In t, :T,

... how itworks ... but, what if x does not occur in t,??

—> t, should be typable! Add t,:T, as premise.

" J
4. Let-Polymorphism

I'-€,:T, ' F X2t]t,:T,

I'F let x=t; In t, =T,

let double = Ax.Ay. X(X(y)) 1In

{
let a = double (Ax:iInt. x+2) 2 iIn {
let b = double (Ax:bool. x) false iIn {..}
T

+

CAN be typed now!! Because the new let rule creates two copies
of double, and the rule for abstraction assigns a different type variable
to each one.

" J
4. Let-Polymorphism

I'-€,:T, ' F X2t]t,:T,

I'F let x=t; In t, =T,

Problem with Let-Polymorphism:

If body of let contains many occ’s of x,
then it will be checked many times!

- Design a more clever algorithm

Good algorithms in practice appear “essentially linear” ... but

4. Let-Polymorphism

... this OCaml program ..

let val fO = fun x => (X,X) 1In
let val f1 = fun y => O (fO y) 1In
let val 2 = fun y => 1 (fl y) in
let val f3 = fun y => 2 (f2 y) in
let val 4 = fun y => 3 (f3 y) 1In
4 (fun z => z)

.. Is well-typed, but takes a **LONG** time to type check!!

" J
4. Let-Polymorphism

Program Derived Type Type Size Constraints
let val fO = VX0:X0—>X0*X0 20 0
fun x => (X,X) 1In

let val 1 = fun y => vX1:X1 —(X1*X1)*(X1*X1) 22 2
f0 (fO y) in

let val 2 = fun y => vX2:X2((((X2*X2)*(X2*X2))* 24 4
f1 (f1 y) in ((X2*X2)*(X2*X2)))*

let val f3 = fun y => (((X2*X2)*(X2*X2))* 28 8
f2 (f2 y) in ((X2*X2)*(X2*X2))))

let val f4 = fun y => 216 16
3 (f3 y) in (...)

f4 (fun z => 2z)

end end end end end

"
4. Conclusion

In simply-typed lambda-calculus, we can leave out ALL type annotations:

-> Insert new type variables
-> do type reconstruction (using unification)

In this way, changing the let-rule, we obtain

Let-Polymorphism

- Simple form of polymorphism
- Introduced by [Milner 1978] in ML
—> also known as Damas-Milner polymorphism

—> in ML, basis of powerful generic libraries
(e.qg., lists, arrays, trees, hash tables, ...)

4. Conclusion

With let-polymorphism, only let-bound values can be used
polymorphically. A-bound values cannot be used polymorphically.

Example: let f = Ag. ...g(1)...g(true)...
in TOX.x)

IS not typable: when typechecking the definition of f,
g has type X (a fresh type variable) which is then constrained by

X =int=>Y and X = bool—>Z

Functions cannot take polymorphic functions as parameters.
This is the key limitation of let-polymorphism.

YES: System F (next time)!

—> Can this be fixed/generalized??
Polymorphic Lambda Calculus

" A
4. Conclusion

Next time: -2 polymorphic lambda-calculus (system F)
(15.12.)
—> polymorphic lambda-calculus + subtyping =
“Bounded Quantification” (System “F-sub” F_.)
—> written assignment will be distributed

(to be handed in by 22.12.)

22.12.: —> adding genericsto FJ (= FGJ)

The programming assignment to be done by 21.01. is
about implementing FGJ!

