## Type Systems

Lecture 6 Nov. 24th, 2004 Sebastian Maneth
http://lampwww.epfl.ch/teaching/typeSystems/2004

## Today <br> ... towards Featherweight JAVA

1. Objects
2. Simple Classes
3. Open Recursion through Self
4. Featherweight Java (FJ)

## 1. Objects

## What is an OBJECT?

$\rightarrow$ a data structure, encapsulating some internal state, and offering access to it via a collection of methods.

Internal state $=$ mutable instance variables

Consider our simply-typed $\lambda$-calculus with records (and Unit type, and sequences) and references.

| Allocation | f | $r=r e f 5$ is of type Ref Nat |
| :---: | :---: | :---: |
| Dereference | ! t | $!r$ is of type Nat |
| Assignment | t: $={ }^{\prime}$ | is of type Unit |

## 1. Objects

OBJECT = a data structure, encapsulating some internal state, and offering access to it via a collection of methods.


## 1. Objects

OBJECT = a data structure, encapsulating some internal state, and offering access to it via a collection of methods.


The type of the record c is $\{$ get : Unit $\rightarrow$ Nat, inc : Unit $\rightarrow$ Unit \}

```
c.i nc unit evaluates to unit : Unit
    c.get unit evaluates to 2 : Nat
```


## 1. Objects

Let count er be the type \{ get: Unit $\rightarrow$ Nat, inc: Unit $\rightarrow$ Unit \}
inc3 $=\lambda c$ : Counter. (c.inc unit; c.inc unit; c.inc unit)

Takes an argument of type count er ("a counter object") and applies three times its inc method.

Can i ncs be applied to the following Reset Count er record?

$$
\begin{array}{cll}
\text { I et } x=\text { ref } & 1 \text { in } \\
\text { \{get } & =\lambda_{-}: \text {Unit. } & !x, \\
\text { inc } & =\lambda_{-}: \text {Unit. } & x:=\operatorname{succ}(!x), \\
\text { reset } & =\lambda_{-}: \text {Unit. } & x:=1\}
\end{array}
$$

## 1. Objects

Can you write a function that generates and returns a new counter object, each time it is called?

## 1. Objects

Can you write a function that generates and returns a new counter object, each time it is called?

## Sure!

$$
\begin{aligned}
& c=1 \text { et } x=\text { ref } 1 \text { in } \\
& \text { \{get }=\lambda_{-} \text {: Unit. ! } \times \text {, } \\
& \text { inc } \left.=\lambda_{-} \text {: Unit. } x:=\operatorname{succ}(!\times)\right\}: \text { Count er } \\
& \text { nenCounter }=\lambda_{-} \text {: Unit. c : Unit } \rightarrow \text { Counter }
\end{aligned}
$$

## 1. Objects

Can you write a function that generates and returns a new counter object, each time it is called?

## Sure!

```
    c = l et x = ref l i n
        {get = \lambda_: Unit. ! x,
                            i nc = \lambda_: Unit. x: =succ(!x)} : Counter
nenCounter = \lambda_: Unit. c : Unit }->\mathrm{ Counter
nc = newCount er unit
```


## 1. Objects

Group all instance variables into a record
$c=1$ et $r=\{x=r$ ef 1$\}$ in
\{get $=\lambda_{-}$: Unit. ! (r.x),
inc $=\lambda_{-}$: Unit. $\left.r . x:=\operatorname{succ}(!(r . x))\right\}:$ Counter

Count er Rep $=\{x:$ Ref Nat $\}$

The representation type of the object.

## 2. Simple Classes

```
nencounter = \lambda_: Unit. c : Unit }->\mathrm{ Counter
newReset Count er = \lambda_: Unit. c : Unit }->\mathrm{ Reset Counter
Reset Count er < Count er
```

How can we define a ResetCounter, using the definition of Counter?

## 2. Simple Classes

```
let \(r=\{x=r\) ef 1\(\}\) in
    \{get \(=\lambda_{-}\): Unit. ! (r.x),
    inc \(=\lambda_{-}\): Unit. \(\left.r \cdot x:=\operatorname{succ}(!(r \cdot x))\right\} \quad:\) Counter
let \(r=\{x=r e f 1\}\) in
    \{get \(=\lambda_{-}\): Unit. ! (r.x),
    inc \(\quad=\lambda_{-}\): Unit. \(r . x\) : \(=\operatorname{succ}(!(r . x))\)
        reset \(=\lambda_{-}\): Unit. \(\left.r . x:=1\right\} \quad: \quad\) Reset Count er
```

Reset Count er $<$ Count er

How can we define a ResetCounter, using the definition of Counter?

## 2. Simple Classes

```
let \(r=\{x=r\) ef 1\(\}\) in
    \(\left\{\right.\) get \(=\lambda_{-}\):Unit. ! (r.x),
        inc \(=\lambda_{-}\): Unit. \(\left.r \cdot x:=\operatorname{succ}(!(r \cdot x))\right\} \quad:\) Counter
    I et \(\begin{aligned} r & =\{x=\text { ef } 1\} \text { in } \\ & \begin{cases}\text { get }=\lambda_{-}: \text {Unit. ! }(r \cdot x),\end{cases} \end{aligned}\)
        inc \(\quad=\lambda_{-}\): Unit. \(r . x:=\operatorname{succ}(!(r . x))\)
        reset \(=\lambda_{-}\): Unit. \(\left.r . x:=1\right\} \quad: \quad\) Reset Counter
```

Or rather, how to describe their common functionality?

## 2. Simple Classes



```
l et r = {x=ref l} in
    \{ \{ \begin{array} { l l l } { \text { get } = \lambda _ { - } ^ { \prime } : \text { Unit. !(r.x),} } \\ { \text { inc } = \lambda _ { - } ^ { \prime } \text { :Unit. r.x:=succ(!(r.x))} } \end{array}
    reset = \lambda_: Unit. r.x:=1} : Reset Count er
```

Or rather, how to describe their common functionality?

NOT f(x)!
Cannot be in terms of $x$ !
$\rightarrow$ Use the object's representation type!

```
Count erRep ={x: Ref Nat }
```


## 2. Simple Classes

```
    I et \(r=\{\times=\) ef 1\(\}\) in counterclass \(r\) : Counter
    count erCl ass =
    \(\lambda_{r}\) : Count er Rep.
        \(\left\{\right.\) get \(=\lambda_{\_}\): Unit. ! \((r \cdot x)\),
        inc \(=\lambda_{\ldots}\) : Unit. \(\left.r \cdot x:=\operatorname{succ}(!(r \cdot x))\right\}:\) Count er Rep \(\rightarrow\) Counter
```

$\rightarrow$ How to define reset counterclass in terms of countercl ass??

## 2. Simple Classes

$$
\text { let } r=\{\times=\text { ef } 1\} \text { in counterdass } r \text { : Counter }
$$

countercl ass $=$
$\lambda r$ : Count er Rep.

$$
\left\{\begin{array}{ll}
\text { get } & =\lambda_{-}: \text {Unit. }!(r \cdot x) \\
\text { inc } & =\lambda_{-}: \text {Unit. } \quad x:=\operatorname{succ}(!(r \cdot x))
\end{array}\right\}: \text { Count erRep } \rightarrow \text { Counter }
$$

$\rightarrow$ How to define reset CounterCl ass in terms of counterCl ass??

```
resetCounterCl ass =
    \lambdar: Count er Rep.
        {get = \lambda_: Unit. !(r.x),
            inc = \lambda_: Unit. r.x:=succ(!(r.x))
            reset = \lambda_: Unit. r.x:=1} : Count erRep }->\mathrm{ Reset Count er
```


## 2. Simple Classes

$$
\text { let } r=\{\times=\text { ef } 1\} \text { in counterdass } r \text { : Counter }
$$

counterCl ass $=$
$\lambda r$ : Count er Rep.

$$
\left\{\begin{array}{ll}
\text { get } & =\lambda_{-}: \text {Unit. }!(r \cdot x) \\
\text { inc } & =\lambda_{-}: \text {Unit. } \quad x:=\operatorname{succ}(!(r \cdot x))
\end{array}\right\}: \text { Count erRep } \rightarrow \text { Count er }
$$

$\rightarrow$ How to define reset CounterCl ass in terms of counterCl ass??

```
reset Count erCl ass =
    \lambdar:CounterRep. I et super = counterCl ass r in
        {get = super.get,
            i nc = super.inc,
        reset = \lambda_: Unit. r.x:=1} : Count erRep }->\mathrm{ Reset Count er
```


## 2. Simple Classes

```
reset CounterCl ass \(=\)
    \(\lambda r\) : CounterRep. I et super \(=\) counterClass \(r\) in
        \{get \(=\) super.get ,
            inc \(\quad=\) super. inc,
            reset \(=\lambda_{-}\): Unit. r.x: =1\} : Count erRep \(\rightarrow\) Reset Count er
```

Can we instantiate reset count er Cl ass with a different record of instance variables?
E.g. BackupCount er Rep $=\{x$ : Ref Nat, b: Ref Nat $\}$

## 2. Simple Classes

```
reset CounterCl ass \(=\)
    \(\lambda r\) : CounterRep. I et super \(=\) counterClass \(r\) in
        \{get = super.get,
            inc \(\quad=\) super. inc,
            reset \(=\lambda_{-}\): Unit. r.x: =1\} : Count erRep \(\rightarrow\) Reset Count er
```

Can we instantiate reset count erclass with a different record of instance variable??
E.g. BackupCount er Rep $=\{x$ : Ref Nat, b: Ref Nat $\}$

```
backupCount erCl ass =
    \lambdar: BackupCount erRep. I et super = reset CounterCl ass r in
        {get = super.get,
            inc = super.inc,
            reset = \lambda_: Unit. r.x:=!(r.b),
            backup = \lambda_:Unit. r.b: =!(r.x)} :
```

                        BackupCount er Rep \(\rightarrow\) BackupCount er
    
## 2. Simple Classes

## What is a Class?



Class $=$ collection of methods
obtained from an object by abstracting its methods w.r.t its instance variables.
(type: Count er Rep $\rightarrow$ Count er)
An object can be obtained from a Class by instantiating it.
Only other use of a Class: extending (= "subtype") it

instantiate

## 2. Simple Classes

```
Set Counter \(=\) \{get: Uni \(t \rightarrow\) Nat, set: Nat \(\rightarrow\) Uni \(t, \quad i n c: U n i t \rightarrow\) Unit \(\}\)
set Count er Cl ass =
    \(\lambda r\) : Count er Rep.
        \(\begin{aligned} \text { \{get } & =\lambda_{-}: \text {Unit. }!(r . x), \\ \text { set } & =\lambda_{i}: \text { Nat. } \\ \text { inc } & =\lambda_{-}: \text {Unit. } \\ & \end{aligned}\)
```

        get / set come from set Count er itself!
    Recall the $\mathrm{fi} \times$ operator.

$$
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{1}}{\Gamma \vdash \mathrm{fi} \times \mathrm{t}_{1}: \mathrm{T}_{1}}
$$

$\mathrm{T}_{1}$ need not be a function type!! $\rightarrow$ can be a record type!!

```
ff = \lambdamutrec: {i seven: Nat }->\mathrm{ Bool, i sodd: Nat }->\mathrm{ Bool }.
    {i seven = \lambdax: Nat.
                            if i szero x then true
                            el se mutrec.i sodd ( pred x),
        i sodd = = x Nat.
                            if isZero x then false
                            else mutrec.i seven ( pred x)}
    (fixff).iseven 7 }7\mathrm{ (f).. 
```


## 2. Simple Classes

```
Set Counter \(=\) \{get: Uni \(t \rightarrow\) Nat, set: Nat \(\rightarrow\) Uni \(t, \quad i n c: U n i t \rightarrow\) Unit \(\}\)
set Count er Cl ass \(=\)
    \(\lambda r\) : Count er Rep.
```


get / set come from set Count er itself!

## 2. Simple Classes

```
Set Counter \(=\{g e t:\) Uni \(t \rightarrow\) Nat, set:Nat \(\rightarrow\) Uni \(t, \quad i n c: U n i t \rightarrow u n i t\}\)
set CounterCl ass=
    \(\lambda_{r}\) : Count er Rep. \(\quad\) fix
        ( \(\lambda\) self : Set Count er.
            fget \(=\lambda_{-}\): Unit. ! (r.x),
            set \(=\lambda_{i}:\) Nat. \(r . x:=1\),
            inc \(=\lambda_{-}\):Unit. self.set(succ(self.get unit))\}):
                            4 Count er Rep \(\rightarrow\) Set Count er
                        get / set come from set count er itself!
```

newset Counter $=\lambda_{-}$: Unit. I et $r=\{x=$ ef $\mathbf{l}\}$ in setcounterClass $r$

## 3. Open Recursion through Self

```
setCounterCl ass =
    \lambdar:Count er Rep. fix
        ( \lambdasel f:Set Count er.
            {get = \lambda_: Unit. !(r.x),
            set = \lambdai:Nat. r.x:=i,
            inc = \lambda_:Unit. self.set(succ(self.get unit))}) :
                                    Count er Rep }->\mathrm{ Set Count er
```

newset Counter $=\lambda_{-}$: Unit. I et $r=\{x=$ ef $\mathbf{l}\}$ in setcounterdass $r$

## 3. Open Recursion through Self

```
setCounterCl ass =
    \lambdar: Count er Rep. #>K
        ( \lambdasel f:Set Count er.
            {get = \lambda_: Unit. !(r.x),
            set = \lambdai:Nat. r.x:=i,
            inc = \lambda_:Unit. self.set(succ(self.get unit))}) :
                                    Count er Rep }->\mathrm{ Set Count er
```

newset Count er $=\lambda_{-}$: Unit. I et $r=\{x=$ ef $\mathbf{l}\}$ in setcounterClass $r$

## 3. Open Recursion through Self

```
setCounterCl ass =
    \lambdar: Count er Rep. P\<<
        ( }\lambda\mathrm{ sel f:Set Counter.
            {get = \lambda_: Unit. !(r.x),
            set = \lambdai:Nat. r.x:=i,
            inc = \lambda_: Unit. self.set(succ(self.get unit))}):
                                    Counter-Rep->\setCOunt er
                                    CounterRep }->\mathrm{ Set Counter }->\mathrm{ Set Counter
newset Count er = \lambda_: Unit. I et r={x=ref
1} i n
                                    setcermass r
                    fix (setCounterCl ass r)
```

$\rightarrow$ A "sel f-object" has to be supplied at instantiation time!!

## 3. Open Recursion through Self

```
setCounterCl ass =
    \lambdar:Count er Rep.
    ( \lambdaself:Set Count er.
        {get = \lambda_:Unit. !(r.x),
        set = \lambdai:Nat. r.x:=i,
        inc = \lambda_
                            Count erRep }->\mathrm{ Set Count er }->\mathrm{ Set Count er
```

NOW, methods of a superclass can call methods of a subclass, even though the subclass does not exist when the superclass is being defined!!

## 3. Open Recursion through Self

```
setCounterCl ass =
    \lambdar:Count er Rep.
    ( \lambdasel f:Set Count er.
        {get = \lambda_:Unit. !(r.x),
        set = \lambdai:Nat. r.x:=i,
        inc= = \lambda_: Unit. self.set(succ(self.get unit))}):
                            Count erRep }->\mathrm{ Set Count er }->\mathrm{ Set Count er
```

NOW, methods of a superclass can call methods of a subclass, even though the subclass does not exist when the superclass is being defined!!

```
accCounterCl ass =
    \lambdar: AccCount er Rep.
        \lambdaself:AccCounter. I et super = setCounterClass r selfin
        {get = super.get,
            set = \lambdai:Nat.(r.a:=succ(!(r.a)); super.set i),
            inc}=\mathrm{ super.inc,
            acc = \lambda_: Unit. !(r.a)} : AccCounterRep }
                                    AccCounter }->\mathrm{ AccCount er
```


## 3. Open Recursion through Self

Nice idea. BUT does NOT work like this!!
newaccCount er Cl ass unit
$\rightarrow$ let $r=\{x=r e f \quad 1, a=r e f \quad 0\}$ in $f i x$ (acccounterclass $r$ )
$\rightarrow \ldots \rightarrow \quad<$ does NOT t er mi nate!!! >

Why? Because occurrence of sel $f$ is "unprotected"

```
accCounterCl ass=
    \lambdar: AccCount er Rep.
        \lambdaself:AccCounter. I et super = setCounterCl ass r self i n
        {get = ...
```


## 3. Open Recursion through Self

Nice idea. BUT does NOT work like this!!

```
newAccCount erCl ass unit
```

```
| let r={x=ref 1, a=ref O} in fix (accCounterClass r)
```

$\rightarrow \ldots \rightarrow \quad<$ does NOT ter mi nat e!!! $>$

## Why? Because occurrence of self is "unprotected"

How to fix this?? 1. protect the sel f by $\lambda$-abstraction
2. model semantics of classes differently (using refs)
3. take objects/classes as NEW PRIMITIVES

```
accCounterCl ass =
    \lambdar:AccCount er Rep.
        \lambdaself:AccCounter. I et super = setCounterClass r self in
        {get = ...
```


## 4. Feitherweight Java

Take objects/classes as NEW PRIMITIVES

In fact, the language FJ consist only of these primitives. "everything is an object!"
$\rightarrow$ Almost as pure as the lambda-calculus
(and almost as degenerate as simply typed lambda calculus wo. base types.)

## 4. Feitherweight Java

Take objects/classes as NEW PRIMITIVES

$$
\text { let } r=\{x=r \text { ef } 1\} \text { in counterdass } r \text {; Count er }
$$

Class $=$ collection of methods (w.r.t. instance variables)
$\rightarrow$ can be extended, or instantiated.

## 4. Feitherweight Java

Take objects/classes as NEW PRIMITIVES

```
I et r = {x=ref l} in counterClass r
```

Class $=$ collection of methods (w.r.t. instance variables)
$\rightarrow$ can beencted, or instantiated.
must extend another Class
Every class (transitively) extends the class obj ect

```
Cl ass reset Counter extends Counter {
    Nat b;
    resetCount er(Nat x, Nat b) {
            super(x), thi s. b=b;
    }
    Nat reset( ) { return new Nat(1); }
```

\}

## 4. Feitherweight Java

Take objects/classes as NEW PRIMITIVES

$$
\text { let } r=\{x=r \text { ef } 1\} \text { in counterclass } r \text {; Count er }
$$

Class $=$ collection of methods (w.r.t. instance variables)
$\rightarrow$ can beexteded, or instantiated. must extend another Class

Every class (transitively)
extends the class obj ect

Cl ass reset Counter extends Counter \{


## 4. Feitherweight Java

Take objects/classes as NEW PRIMITIVES

```
l et r = {x=ref l} in counterClass r;
```

Class $=$ collection of methods (w.r.t. instance variables)
$\rightarrow$ can beextented, or instantiated. must extend another Class

Every class (transitively) extends the class obj ect
Cl ass reset Counter extends Counter \{


## 4. Feitherweight Java: terms

How do we instantiate a class?

| new Counter (t_1, | Object Creation (similar to $\lambda$-abstraction) |  |
| :---: | :---: | :---: |
| t.met_l, ... t_n) | Method Invocation | (similar to function application) |
| $\times$ | Variables | (same as in $\lambda$-calculus) |
| t.f | Field Access | (like in records..) |
| (sCl ass) t | Cast | (like subsumption) |

Object Creations are the only values! (like in pure $\lambda$ )
E.g. new $A()$, new $B()$, new $A($ new $B()$, new $C()), \ldots$

FJ Program = collection of Class Declarations plus a Term to be evaluated

```
Cl ass A extends Obj ect { A() {super();} }
Cl ass B extends Obj ect { B() {super(); } }
Cl ass Pair extends Obj ect {
    Obj ect fst;
    Obj ect snd;
    Pair(Obj ect fst, Objeect snd) {
        super(); this.fst =fst; this.snc=snd;}
    Pair setfst(Obj ect newfst) {
        ret urn new Pai r( nevfst, this.snd); }
}
```

```
new Pai r(new A(), new B()).setfst(new B())
```

FJ Program = collection of Class Declarations plus a Term to be evaluated

```
Cl ass A extends Obj ect { A() {super();} }
Cl ass B extends Obj ect { B() {super();}}
Cl ass Pair extends Object {
    Obj ect fst;
    Obj ect snd;
    Pair(Obj ect fst, Object snd) {
        super(); this.fst =fst; this.snc=snd; }
    Pair setfst(Obj ect newfst) {
        return new Pai r(newfst, this.snd);}
}
```

new Pai r(new $A()$, new $B())$. setfst (new $B())$
$\rightarrow$ new Pair (new $B()$, new $B()$ )

FJ Program = collection of Class Declarations plus a Term to be evaluated

```
Cl ass A extends Obj ect { A() {super();}}
Cl ass B extends Obj ect { B() {super();} }
Cl ass Pair extends Obj ect {
    Obj ect fst;
    Obj ect snd;
    Pair(Obj ect fst, Object snd) {
        super(); this.fst=fst; this.snc=snd; }
    Pair setfst(Obj ect newfst) {
        ret urn new Pair( newfst, this.snd); }
}
```

new Pai r(new $A()$, new $B())$. setfst (new $B())$
$\rightarrow$ new Pair (new $B()$, new $B())$

Method Invocation: mbody(setfst, Pair) = ( newfst, new Pair(newfst, this.snd) )
(new $\mathrm{C}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$ ).setfst $\left(\mathrm{u}_{1}\right) \rightarrow\left[\right.$ newfst $\rightarrow \mathrm{u}_{1}$, this $\rightarrow$ new $\left.\mathrm{C}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)\right] \mathrm{t}_{0}$

FJ Program = collection of Class Declarations plus a Term to be evaluated

```
Cl ass A extends Obj ect { A() {super();} }
Cl ass B extends Obj ect { B() {super(); } }
Cl ass Pair extends Obj ect {
    Obj ect fst;
    Obj ect snd;
    Pair(Obj ect fst, Object snd) {
        super(); this.fst =fst; this.snc=snd; }
    Pair setfst(Obj ect newfst) {
        ret urn new Pair( newf st, this.snd); }
}
```

( ( Pai r) new Pai r ( new Pai r ( new A(), new B()), new A()). fst). snd $\rightarrow$

FJ Program = collection of Class Declarations plus a Term to be evaluated

```
    Cl ass A extends Obj ect { A() {super();}}
    Cl ass B extends Obj ect { B() {super();}}
    Cl ass Pair extends Obj ect {
    Object fst;
    Obj ect snd;
    Pair(Obj ect fst, Obj ect snd) {
        super(); this.fst fist; this.snc=snd; }
    Pair setfst(Obj ect newfst) {
        return new Pair(newf st, this.snd);}
    }
```

( ( Pai r) new Pair ( new Pai r( new $A()$, new $B()$ ), new $A()$ ). fst). snd
$\rightarrow$ ( (Pai $r$ ) new Pair (new $A()$, new $B())$ ). snd

Field Selection: fst is declared to contain an obj ect
Thus, the return new Pair (new $A()$, new $B())$ is now an Object!

FJ Program = collection of Class Declarations plus a Term to be evaluated

```
    Cl ass A extends Obj ect { A() {super();} }
    Class B extends Obj ect { B() {super(); } }
    Cl ass Pair extends Obj ect {
    Object fst;
    Obj ect snd;
    Pair(Obj ect fst, Obj ect snd) {
        super(); this.fst=fst; this.snc=snd; }
    Pair setfst(Obj ect newfst) {
        return new Pair(nevfst, this.snd);}
    }
```

( ( Pai r) new Pair ( new Pai r( new $A()$, new $B()$ ), new $A()$ ). fst). snd


Cast is needed, because mbody(snd, Object) is not defined!!

FJ Program = collection of Class Declarations plus a Term to be evaluated

```
    Cl ass A extends Obj ect { A() {super();} }
    Cl ass B extends Obj ect { B() {super();} }
    Cl ass Pair extends Obj ect {
    Obj ect fst;
    Obj ect snd;
    Pair(Obj ect fst, Obj ect snd) {
        super(); this.fst=fst; this.snc=snd; }
    Pair setfst(Obj ect newfst) {
        ret urn new Pair( newf st, this.snd);}
    }
```

( ( Pai r) new Pair ( new Pai r( new A(), new B()), new A()). fst). snd
$\rightarrow$ ( (Pair) new Pair (new $A()$, new $B())$ ). snd
$\rightarrow$ new pair (new $A()$, new $B())$. snd
$\rightarrow$ new B( )

FJ Program = collection of Class Declarations plus a Term to be evaluated

```
Cl ass A extends Obj ect { A() {super();}}
Class B extends Obj ect { B() {super(); } }
Cl ass Pair extends Object {
    Obj ect fst;
    Obj ect snd;
    Pair(Obj ect fst, Object snd) {
        super() ; this.fst=fst; this.snc=snd;}
    Pair setfst(Obj ect newfst) {
        ret urn new Pair( newf st, this.snd);}
}
```

( ( Pai r) new Pair ( new Pai r( new $A()$, new $B()$ ), new $A()$ ). fst). snd


## 4. Feitherweight Java

$\rightarrow$ Casts only make sense with run-time type look-up.

Today's LAB:
$\rightarrow$ start implementing evaluation of FJ terms
$\rightarrow$ to do that, simply ignore cases (by evaluating them away)


