Lecture 4 Nov. 10th, 2004
Sebastian Maneth

http://lampwww.epfl.ch/teaching/typeSystems/2004

" JEE
Today: ... simple language extensions ...

1. Derived Forms
2. Labeled Records
3. Labeled Variants
4. Lists

5. Normalization

" JEE
1. Derived Forms

Idea Give more freedom to the programmer by introducing
new syntactic forms f to the surface language L.

If
A. the evaluation behavior and
B. the typing behavior

of ¥ can be derived from those of L,
then fis a derived form of L.

Derived forms give more freedom to the language designer,
because the complexity of the internal language does not change.

- type safety (progress+preservation) need NOT be reproved!

" JEE
1. Derived Forms
Example Sequencing.
First, add new type Unit with unique constant value unit, and

typing rule 'k unit: Unit

- similar to void in languages like C or Java.
-> useful if we care about side effects, not result.

Sequencing: t,; t, = “evaluate t,, throw away its trivial result,
then evaluate t,.”

Possible evaluation / typing rules

>t

—r L unit;t,>t, I'Fty : Unit It T,
L2t

FEtt,:T,

" JEE " JEE
1. Derived Forms 1. Derived Forms
Example Sequencing. Example Sequencing.
I'Ft, @ Unit I'Ft,: T, I'Ft, : Unit It T,
ThEt 6T, Tkt t:T,
- similar to let / application of an abstraction -> similar to let / application of an abstraction
-> is there a lambda term with same typing?? -> is there a lambda term with same typing??
YES! Define t,;;t, = (Ax:Unit. t,) t; x & FV(t,), fresh!
I'F (xeUnit.) t,: T,
2>t 2>t
—Lr L unit Dt —Lr L unit Dt
Lttt L2t 5t
" JEE " JEE
1. Derived Forms 1. Derived Forms
Example Sequencing. Example Sequencing.
I'Fty - Unit It T, I'F ty - Unit It T,
IRt 6T, It 6T,
-> similar to let / application of an abstraction -> similar to let / application of an abstraction
-> is there a lambda term with same typing?? -> is there a lambda term with same typing??
YES! Define t,;t, = (Ax:Unit. ty) t; x g FV(t,), fresh! YES! Define t,;t, = (Ax:Unit. ty) t; X & FV(t,), fresh!
IoxUnit -t T,
I'F (Ax:Unit. t,) - Unit > T, I'Ft,: Unit I'F (x:Unit. t,) : Unit > T, I'Ft,: Unit
I'F (xcUnit. ty) t,: T, I'F (AcUnit. ty) t,: T,
b2 unit;t, >t b2 unit;t, >t
ittt e LDt o

1. Derived Forms

Example Sequencing.

I'Ft, @ Unit I'Ft,: T,
IEt 6T,

- similar to let / application of an abstraction
-> is there a lambda term with same typing??

YES! Define t,;t, = (AxUnit.t) t;

I'Ht: T,
OoxUnit Ft,: T,
I'F (x:Unit. t,) : Unit > T,
I'F(xeUnit. ty) t,: T,

x ¢ FV(t,), fresh!

xg FV(ty)

I'Ft, - Unit

Lot
—r 7L unitit,
Lttt

.
1. Derived Forms
Example Sequencing.

I'Ft, : Unit It T,
FEt 6T,

-> similar to let / application of an abstraction
-> is there a lambda term with same typing??

e
YES! Define t;;t, = (AxUnit.t) t;

\

“desugaring”

x & FV(t,), fresh!

syntactic sugar

t, >t ~ At U iff e(t) > el) e: ext > int
1 1’ Unlt;12912 ext int
L2t 5t

B. [heet:T iff I'ke®:T

ext
not needed anymore!!

1. Derived Forms
Example Sequencing.
Questions:

1. Can you prove that ; is a derived form (= A. and B.)

2. Is let aderived form?

.
2. Labeled Records
{x=5} record of type {x:Nat}
{partno=5524,available=true}
record of type { partno:Nat, available:Bool }

selection: {x=5,y=6}.y > 6

t, >t _ At tiff e(t) D et) e ext>int
—r 1 unit;, >t e "
L2t B. Theot:T iff Thye®:T
not needed anymore!!

evaluation

1=V, L L= 2y “if everything is value, you can select”

t >t
NN

“evaluate inside of selections, ...

..., from left to right.”
R R e

(> ordered !)
T Pl 8 2

" JEE
2. Labeled Records

{x=5} record of type {x:Nat}

{partno=5524,available=true}
record of type { partno:Nat, available:Bool }

selection: {x=5,y=6}.y > 6

typing

FEE:Ty, . THEET,
FE{=t, L =t) o {0eTy, L 1T}

MR {0 =T, L LT)
FEt. 15T

" JEE
2. Labeled Records

Note: our records are ordered :

{x=5,y=6} is NOT the same as {y=6,x=5}

> {x:Nat, y:Nat} # {y:Nat, x:Nat }

Will change in the presence of subtyping.

(then, one will be a subtype of the other, i.e., terms of the one
type can be used in any context where terms of the other are expected)

" JEE
3. Labeled Variants
Often programs deal with heterogeneous collections of values.

e.g., anode of a binary tree can be internal or a leaf

a list can be nil (empty) or consisting of a head and tail
etc.

variant type:
Addr = <physical:PhysicalAddr, virtual:VirtualAddr>

a = <physical=pa> as Addr;

variant value
-> test which “internal” type a variant value has: case

getName = Aa:Addr. case a of

<pyhsical=x> > x._firstlast
| <virtual=y> - y._name

" JEE
3. Labeled Variants

evaluation:

(like records: ordered !)

i€l...n
case (<lj=v;> as T) of <l;=x;>>t; > [x DVl
t >t
case t, of <l;=x;>>t; > case t,” of <l;=x;>>t;
iel...n iel...n

t D>t
<li=t;> as T > <l;i=t;”> as T

typing: IHt:T;
IE<lj=t;> as <I;:T;> @ <1;iT>
i€l..n
IEty<hzTy> foreachi ', x;:T; F€;:T

['kcase t, of <l;=x;>>t; = T
iel...n

"
3. Labeled Variants

Some useful variants: a. Options
b. Enumerations
c. Single-Field Variants

a. Options

OptNat = <none:Unit, some:Nat>

Table = Nat->OptNat partial functions on numbers
- how to define the empty table?

emptyTable = An:Nat. <none=unit> as OptNat

- how to update (m, v) of a table?

"
3. Labeled Variants

Some useful variants: a. Options
b. Enumerations
c. Single-Field Variants

a. Options

OptNat = <none:Unit, some:Nat>

Table = Nat->OptNat partial functions on numbers
- how to define the empty table?

emptyTable = An:Nat. <none=unit> as OptNat

- how to update (m, v) of a table?

update = AXt:Table. Am:Nat. Av:iNat. in:Nat
if equal n m then <some=v> as OptNat
else tn

"
3. Labeled Variants

Some useful variants: a. Options

b. Enumerations

c. Single-Field Variants
a. Options

OptNat = <none:Unit, some:Nat>

Table = Nat->OptNat partial functions on numbers

- how to define the empty table?

emptyTable = An:Nat. <none=unit> as OptNat

- how to update (m, v) of a table? (type Table->Nat->Nat->Table)

update = At:Table. Am:Nat. Av:Nat. An:Nat
if equal n m then <some=v> as OptNat
else tn

" JEE
3. Labeled Variants
Some useful variants: a. Options

b. Enumerations
c. Single-Field Variants

a. Options
OptNat = <none:Unit, some:Nat>
Table = Nat->OptNat partial functions on numbers
-> table lookup: (e.g., of entry ‘'5’)
x = case t(5) of

<none=u> > 0
| <some=v> > v

" JEE
3. Labeled Variants
Some useful variants: a. Options

b. Enumerations
c. Single-Field Variants

a. Enumerations

Weekday = <monday:Unit, tuesday:Unit, wednesday:Unit,
thursday:Unit, friday:Unit>

function that returns the next buisiness day:

nextBuisinessDay = Aw:Weekday.case w of
<monday=x> -> <tuesday=unit> as Weekday
<tuesday=x> -> <wednesday=unit> as Weekday

<friday=x> - <monday=unit> as Weekday

" JEE
3. Labeled Variants

Some useful variants: a. Options
b. Enumerations
c. Single-Field Variants

a. Single-Field Variants

dollars2euros
euros2dollars

rd:Float.timesfloat d 0.8145
rd:Float.timesfloat d 1.2277

euros2dol lars(dollars2euros 39.50) > 39.4984

" JEE
3. Labeled Variants

Some useful variants: a. Options
b. Enumerations
c. Single-Field Variants

a. Single-Field Variants

dollars2euros
euros2dollars

rd:Float.timesfloat d 0.8145
Ard:Float. timesfloat d 1.2277

euros2dollars(dollars2euros 39.50) > 39.4984
But, dollars2euros(dollars2euros 39.50)

nonsense!

" JEE
3. Labeled Variants

Some useful variants: a. Options
b. Enumerations
c. Single-Field Variants

a. Single-Field Variants
DollarAmount = <dollars:Float>

EuroAmount = <euros:Float>;

dollar2euros = Ad:DollarAmount.
case d of <dollars=x> >
<euros=timesfloat x 0.8145> as EuroAmount

Type of dollar2euros: Dol larAmount - EuroAmount

" JEE
4. Lists

List is a new type constructor (similar to =)

Foratype T,
List T describes finite-length lists whose elements are from T.

New syntactic forms:

evaluation:
nil[T] isniI[SIil[T]) > true
cons[T] t1 t2 isnil[S](cons[T] v, v,) > false
isnil[T] t head[S](cons[T] v; V,) 2> v,
head[T] t tail[S](cons[T] v, v,) 2 v,

tail[T] t .
+ usual cbv propagation rules

" JEE
4. Lists typing:
IFFnil[T]:List T,

FFt:T, I'Ft,-List T,
'k cons[T,] t, t,:List T,

Ikt:list T,

'k iasnil[T,] t,:Bool
< Ik head[T,] t,:T,

I'Ftail[T,] t:List T,

-> can you prove the progress theorem for lambda+Bool+Lists?

- which type annotations can be removed? which not?

" S
4. Lists

-> can you prove the progress theorem for lambda+Bool+Lists?

NO! head[Bool] nil[Bool] well-typed, but stuck!!

How to handle this: (1) split type List into emptyList and nonemptyList

(2) raise an EXCEPTION

most languages do (2).

Exceptions are straightforward to evaluate/type. Read/enjoy Chapter 14!!
+ do the exercises

" JE
5. Normalization
t is normalizable < thasnormalform (3t”: t > t° A)

Recall: the (pure) lambda calculus is Turing complete!
In the (pure) simply typed lambda calculus every well-typed term

is normalizable!!

Define: (1) R,(t) < tnormalizable
2) er—nz(t) < tnormalizable and Vs: RTl(s) = RTZ(t s)

easy Lemma: If t: Tand t>t then R(t) & R(t)

Proof. tis normaliz. < t'is normaliz. (because - is deterministic!)
Hence, if T=A then we are done!

T=T,>T,: Vs: RTl(s) = RTz(t s) & Vs RTl(s) = RTZ(t’ s)

induction (on T!) + because ts > t's

" S
5. Normalization

Lemma: x;:Ty,...x,: T,Ft:T and
Vi Ty,....V,:T, closed values, then R{([x;2Vvy]...[x,2V,]1)

N
5. Normalization

Lemma: x;:Ty,...x,;: T,Ft:T and
Vy:Ty,....v,:T, closed values, then R([x;2V]...[x,2V,]1)

Proof. by induction on the derivation -

1) t=x, T=T,

then [x,2v,]..[x,”V,] t =V, and R{(v,) because it is a value.

(2) t=2x:Sy.s,, T=S; > S,, and x:Ty,... %, T xS, Fs,: S,

=[xVl [x, >V,]t is avalue! (by INV-L)

to show: s:S, and Rsl(s) implies RSZ(([xlévl]...[xn—)vn] 1) s)

Proof. by induction on the derivation F

1) t=x, T=T,
then [x,2v,]..[x,2V,] t = v;, and R(v;) because it is value.

(2) t=2x:Sy.s,, T=S; 2> S,, and x:Ty,... X, T xS, Fs,: S,

= [Vl [x,>v,] t is avalue! (by INV-L)

to show: s:S, and Rsl(s) implies RSZ(([xl—)vl]...[xnévn] t)s)

l

= s >"v for some closed value v

By induction, RSZ([xlévl]...[x,,—)vn][x—)v] S,)

"
5. Normalization

Lemma: X,:T,,.... X, T, Ft: T and
VT,V T, closed values, then R([x,2>V,]...[x,2>V,]1)

0
5. Normalization

Lemma: x,:T,,....x,; T,Ft: T and
vy Ty,..., v, T, closed values, then R([x,2>V,]...[x,>V,]1)

Proof. by induction on the derivation

to show: s:S, and Rsl(s) implies Rsz(([X19V1]---[Xn‘)Vn] 1) s)

|

= s >" v for some closed value v

By induction, Rsz([xl—)vl]...[xn—)vn][xév] S,)

Proof. by induction on the derivation +

to show: s:S, and Rsl(s) implies Rsz(([X19V1]---[Xn9Vn] t)s)

|

= s >" v for some closed value v

By induction, RSZ([xl—)vl]...[xnévn][xév] S,)

o
(AX:Sy. X2 V4]...[X, DV,] S)) s

" S
5. Normalization

Lemma: x;:Ty,...x,: T,Ft:T and
Vi Ty,....V,:T, closed values, then R{([x;2Vvy]...[x,2V,]1)

" S
5. Normalization

Lemma: x;:Ty,...x,;: T,Ft:T and
Vy:Ty,....v,:T, closed values, then R([x;2V]...[x,2V,]1)

Proof. by induction on the derivation -

to show: s:S; and Rsl(s) implies RSZ(([xlévl]...[xn—)vn] 1) s)

|

= s 2" v for some closed value v

By induction, RSZ([xl—)vl]...[xn—)vn][xév] S,)

N
by easy Lemma, RSz((AX:Sy. X2V [X V] S5) S)

Proof. by induction on the derivation F

to show: s:S, and Rsl(s) implies RSZ(([xlevl]...[xnévn] 1) s)

|

= s " v for some closed value v

By induction, RSZ([xl—)vl]...[xnévn][xév] S,)

™
by easy Lemma, RSz((XS, X2V XD Va] S,) S)

= Ro ([DVi]...[x, PVl (1S, 5,))
-
t

"
5. Normalization

Lemma: X,:T,,.... X, T, Ft: T and
VT,V T, closed values, then R([x,2>V,]...[x,2>V,]1)

Proof. by induction on the derivation

to show: s:S, and Rsl(s) implies Rsz(([X19V1]---[Xn‘)Vn] 1) s)

|

= s >" v for some closed value v

By induction, Rsz([xl—)vl]...[xn—)vn][xév] S,)

N
by easy Lemma, RSZ((AX:Sy. Xy 2V4]...[X2V,] S5) S)

=R vyl [X,DVv,] (xS, sy) S
52(XDVl X, DV] (XS,) 8) (b definition of R)

t
Rslasz([X19V1]---[Xn_)Vn] t)

