" JEE
Today: ... simple language extensions ...

1. Derived Forms

2. Labeled Records

3. Labeled Variants

4. Lists

Lecture 4 Nov. 10th, 2004
Sebastian Maneth

5. Normalization

http://lampwww.epfl.ch/teaching/type Systems/2004

" JE
1. Derived Forms

1. Derived Forms

Idea Give more freedom to the programmer by introducing Example Sequencing.
new syntactic forms F to the surface language L. First, add new type Unit with unique constant value unit, and

If typingrule 'k unit: Unit
A. the evaluation behavior and

B. the typing behavior - similar to void in languages like C or Java.

-> useful if we care about side effects, not result.
of ¥ can be derived from those of L,

thenfis a derived form of L.

Sequencing: t,;t, = “evaluate t,, throw away its trivial result,
then evaluate t,.”

Derived forms give more freedom to the language designer, Possible evaluation / typing rules

because the complexity of the internal language does not change.
>t

—r L unit;ot It @ Unit Ikt T,
- type safety (progress+preservation) need NOT be reproved! it

It 60T,

"
1. Derived Forms

Example Sequencing.

"
1. Derived Forms
Example Sequencing.

'kt : Unit I'Ft,:T,
[l I S Y

[kt : Unit I'Ft,:T,
LBl YR P Y

- similar to et / application of an abstraction

- similar to let / application of an abstraction
-> is there a lambda term with same typing??

- is there a lambda term with same typing??

YES! Define t,;t, = (AxUnit.t) t; x g FV(t,), fresh!

[+ (x:Unit. ty) t,: T,
>t

—_— it;t, t L2y
unit;t, >
>t 2 2

——C———— unit;t >t
ittt 2

" JEE
1. Derived Forms
Example Sequencing.

['Ft, : Unit I'Ft,:T,
It T,

-> similar to let / application of an abstraction
-> is there a lambda term with same typing??

YES! Define t;;t, = (AxUnit.t) t; x ¢ FV(t,), fresh!

I'F (Ax:Unit. t,) - Unit > T, I'Ft, - Unit
I'F (xcUnit. ty) t,: T,

b2 it t, >t
—_— unit;
ittt 272

N
1. Derived Forms
Example Sequencing.

't 2 Unit 'HG: T,
IHt T,

-> similar to let / application of an abstraction
-> is there a lambda term with same typing??

YES! Define t;;t, := (Ax:Unit.t) t;
'EG,:T,
IoxUnit =t T,
I'F (Ax:Unit. t) : Unit > T, 'kt : Unit
I'E(xUnit. ty) t: T,

X ¢ FV(t,), fresh!

xg FV(t,)

>t

—————— unit;t, >t
ittt 272

" I
1. Derived Forms

Example Sequencing.

Questions:

1. Canyou prove that ; is a derived form (= A. and B.)

2. Is let aderived form?

" JEE
1. Derived Forms
Example Sequencing.

'k t, : Unit I'Ft,:T,
It 4T,

- similar to let / application of an abstraction
-> is there a lambda term with same typing??

YES! Define t;;t, = (Ax:Unit. t) t; X g FV(t,), fresh!

I,xUnit = t,:T,

I'F (x:Unit. t,) - Unit > T, I'Ft, 2 Unit
I'F (xcUnit. ty) t,: T,

LY it t, >t
—_— unit;
ittt 272

" JEE
1. Derived Forms
Example Sequencing.

't 2 Unit IEG:T,
IEt;6,:T,

- similar to let / application of an abstraction
-> is there a lambda term with same typing??

e
YES! Define t;;t, := (Ax:Unit.t) t; x & FV(t,), fresh!
syntactic sugar “desugaring”
>t A

~ Lt Ui e(t) > et) e: ext > int
unit;t,>t, 1 "
B. kg t:T iff 'k e®:T

int

it >ttt

not needed anymore!!

" JEE
2. Labeled Records
{x=5} record of type {x:Nat}
{partno=5524,available=true}
record of type { partno:Nat, available:Bool }

selection: {x=5,y=6}.y > 6

>t Wit LSt At tiff e(t) D et) el ext>int
. v) 2
Litb >4t B. Theqt:T iff Thye:T
not needed anymore!!

evaluation

L=V, s =Vl 2y “if everything is value, you can select”

t >t

.1 >t .1 “evaluate inside of selections, ...
1= 1 -

..., from left to right.”

(- ordered !)

" JEE
2. Labeled Records
{x=5} record of type {x:Nat}
{partno=5524,available=true}
record of type { partno:Nat, available:Bool }

selection: {x=5,y=6}.y > 6

typing

M Ty, o TEET,
=t L=t) o Ty, L T

Pl :T, ., 0T
It 1Ty

" JEE
3. Labeled Variants
Often programs deal with heterogeneous collections of values.

e.g., anode of a binary tree can be internal or a leaf

a list can be nil (empty) or consisting of a head and tail
etc.

variant type:
Addr = <physical:PhysicalAddr, virtual:VirtualAddr>

a = <physical=pa> as Addr;

variant value
- test which “internal” type a variant value has: case

getName = Aa:Addr. case a of

<pyhsical=x> > x.firstlast
| <virtual=y> - y.name

" JEE
2. Labeled Records
Note: our records are ordered :

{x=5,y=6} is NOT the same as {y=6,x=5}

- {x:Nat, y:Nat } # {y:Nat, x:Nat }

Will change in the presence of subtyping.

(then, one will be a subtype of the other, i.e., terms of the one
type can be used in any context where terms of the other are expected)

"
3. Labeled Variants

evaluation:

(like records: ordered !)

i€l...n
case (<I;=v;> as T) of <I;=x;>>t; > [D V]

t, >t
case t, of <l;=x;>>t; > case t,” of <l;=x;>>t;
iel...n iel...n
t >t

<Ii=t;> as T > <Ii=t;">as T

typing: I-t:T;
IE<lj=t;> as <I;:T> @ <I:Ty>
i€l..n

IEtyz<lyzT> foreachi I, x;:T;Ft;:T

I'kcase t, of <l;=x;>>t; 1 T
icl..n

"
3. Labeled Variants

Some useful variants: a. Options

b. Enumerations

c. Single-Field Variants
a. Options

OptNat = <none:Unit, some:Nat>
Table = Nat->OptNat partial functions on numbers
-> how to define the empty table?
emptyTable = An:Nat. <none=unit> as OptNat

- how to update (m, v) of a table?

" S
3. Labeled Variants

Some useful variants: a. Options

b. Enumerations

c. Single-Field Variants
a. Options

OptNat = <none:Unit, some:Nat>
Table = Nat->OptNat partial functions on numbers
- how to define the empty table?
emptyTable = An:Nat. <none=unit> as OptNat
- how to update (m, v) of a table?

update = At:Table. Am:Nat. Av:Nat. An:Nat
if equal n m then <some=v> as OptNat
else tn

"
3. Labeled Variants

Some useful variants: a. Options
b. Enumerations
c. Single-Field Variants

a. Options
OptNat = <none:Unit, some:Nat>
Table = Nat->OptNat partial functions on numbers
- how to define the empty table?
emptyTable = An:Nat. <none=unit> as OptNat

-> how to update (m, v) of a table? (type Table->Nat->Nat->Table)

update = jit:Table. im:Nat. Av:Nat. An:Nat
if equal n m then <some=v> as OptNat
else tn

"
3. Labeled Variants

Some useful variants: a. Options
b. Enumerations
c. Single-Field Variants

a. Enumerations

Weekday = <monday:Unit, tuesday:Unit, wednesday:Unit,
thursday:Unit, friday:Unit>

function that returns the next buisiness day:

nextBuisinessDay = iw:Weekday.case w of
<monday=x> -> <tuesday=unit> as Weekday
<tuesday=x> > <wednesday=unit> as Weekday

<friday=x> - <monday=unit> as Weekday

" S
3. Labeled Variants

Some useful variants: a. Options
b. Enumerations
c. Single-Field Variants

a. Options
OptNat = <none:Unit, some:Nat>
Table = Nat->OptNat partial functions on numbers
- table lookup: (e.g., of entry ‘5")
x = case t(5) of

<none=u> > 0
| <some=v> > v

"
3. Labeled Variants

Some useful variants: a. Options
b. Enumerations
c. Single-Field Variants

a. Single-Field Variants

dollars2euros = Ad:Float.timesfloat d 0.8145
euros2dollars = Ad:Float.timesfloat d 1.2277

euros2dol lars(dol lars2euros 39.50) > 39.4984

"
3. Labeled Variants

Some useful variants: a. Options
b. Enumerations
c. Single-Field Variants

a. Single-Field Variants

dollars2euros
euros2dollars

Ad:Float.timesfloat d 0.8145
Ad:Float.timesfloat d 1.2277

euros2dollars(dollars2euros 39.50) > 39.4984
But, dollars2euros(dollars2euros 39.50)

nonsense!

" S
3. Labeled Variants

Some useful variants: a. Options
b. Enumerations
c. Single-Field Variants

a. Single-Field Variants

Dol larAmount = <dollars:Float>
EuroAmount = <euros:Float>;

dollar2euros = Ad:DollarAmount.
case d of <dollars=x> >
<euros=timesfloat x 0.8145> as EuroAmount

Type of dollar2euros: DollarAmount - EuroAmount

"
4. Lists

List is a new type constructor (similar to)

Foratype T,
List T describes finite-length lists whose elements are from T.

New syntactic forms:

" JEE
4, Lists typing:
IEnil[T]:List T,

Ft:T, I'Ft-List T,
I'Fcons[T,] t; t,-List T,

IEt:List T,
I'Fisnil[T,] t;:Bool
I'Fhead[T,] t,:T,
I'Ftail[T,] t;:List T,

-> can you prove the progress theorem for lambda+Bool+Lists?

- which type annotations can be removed? which not?

" JEE
5. Normalization
t is normalizable < thasnormalform (3t”: t > t* A)

Recall: the (pure) lambda calculus is Turing complete!
In the (pure) simply typed lambda calculus every well-typed term
is normalizable!!

Define: (1) R,(t) < tnormalizable
) RTﬁTz(t) < tnormalizable and Vs: er(s) = RTZ(t s)

easy Lemma: If t:Tand t>t then R(t) & R(t)

Proof. tis normaliz. < t' is normaliz. (because - is deterministic!)
Hence, if T=A then we are done!

T=T,>T,. Vs: RTl(s) = RTZ(t s) & Vs: RTl(s) = RTz(t‘ s)

induction (on T!) + because ts > t's

evaluation:
nil[T] isnil[SJ(nil[T]) > true
cons[T] t1 t2 isnil[S](cons[T] v, v,) > false
isnil[T] t head[S](cons[T] v; v,) 2> v,
head[T] t tail[S](cons[T] v; v,) 2> v,
tail[T] t i
+ usual cbv propagation rules
" JEE
4. Lists
-> can you prove the progress theorem for lambda+Bool+Lists?
NO! head[Bool] nil[Bool] well-typed, but stuck!!
How to handle this: (1) split type List into emptyList and nonemptyList
(2) raise an EXCEPTION
most languages do (2).
Exceptions are straightforward to evaluate/type. Read/enjoy Chapter 14!!
+ do the exercises
n

N
5. Normalization

Lemma: X,:T,,....x,;:T,Ft: T and

v;Ty,....v, T, closed values, then R;([X;>V,]...[x,>V,]1)

Proof. by induction on the derivation

(1) t=x, T=T,
then [x;2v]..[x,>V,] t = Vv;, and R(v,) because it is a value.
(2) t=2x:S;.s,, T=S, > S,, and x:T;,.... %, T, x:S; Fs,:S,
= [x,2v]...[x,”V,] t isavalue! by INV.L)

to show: s:S; and Rsl(s) implies RSQ(([xlévl]...[x,ﬁvn]) s)

" S
5. Normalization

Lemma: x;:T,... %, T,Ft:T and
vy:Ty,..., VT, closed values, then R;([X,2V,]...[x,>V,]1)

Proof. by induction on the derivation
1) t=x, T=T,
then [x,>v,]..[x,2V,] t =V, and R(v)) because it is value.
(2) t=2x:S;.s,, T=S, > S,, and x;:T,,.... x,; T, X:S; Fs,:S,
= [x2v]...[x,”v,] t isavalue! by INV.L)

to show: s:S; and Rsl(s) implies RSZ(([XI—)VI]...[xnévn] 1)s)
|

= s >"v for some closed value v

By induction, RSZ([XI—)vl]...[xn—)vn][x—)v] S,)

"
5. Normalization

Lemma: x;:Ty,....x: T, Ft: T and
vTy,....v, T, closed values, then R;([X,>Vy]...[x,>V,]1)

Proof. by induction on the derivation -
to show: s:S; and Rsl(s) implies Rsz(([xf)vﬂ XVl) s)
= s " v for some closed value v

By induction, Rs ([x,>Vy]...[x, >V][x>V] s;)

" JEE
5. Normalization

Lemma: x;:T,,...x, T, Ft: T and
VT,V T, closed values, then R([X,2Vy]...[x,>V,] 1)

Proof. by induction on the derivation -

to show: s:S; and Rsl(s) implies RSZ(([xl—)vl]...[xnévn] 1) s)

= s 2" v for some closed value v

By induction, Rs ([X;>V]...[%,2V,][x>V] s5)

Ol
(AX:Sy. XDV XDV, sy) s

" S
5. Normalization

Lemma: X;:Ty,....x,: T,Ft: T and
VyiTy,...,V, T, closed values, then R([x;2>Vy]...[x,2V,] 1)

Proof. by induction on the derivation -

to show: s:S; and Rsl(s) implies RSZ(([xl—)vl]...[xnévn] 1) s)
|
= s " v for some closed value v
By induction, RSZ([Xlévl]A..[xn—)vn][xév] S,)

N
by easy Lemma, Rsz((AX:Sy. X2V X2V, sp) S)

= JEE
5. Normalization

Lemma: x;:T,,... X, T,Ft: T and
Vi T,V T, closed values, then R([x;2>Vy]...[x,2V,] 1)

Proof. by induction on the derivation -

to show: s:S, and Rsl(s) implies RSZ(([XI—)VI]...[X,,QV,\] 1) s)

|

= s " v for some closed value v
By induction, RSZ([xlévl]...[xnévn][xév] S,)

Ol
by easy Lemma, RSZ((AX:Sy. X2V X2V, sy) 8)

= Rg, (2] [%DV,] (XS, 8,) 5)
-

t

" B
5. Normalization

Lemma: X,:T,,....x,;:T,Ft: T and
v;Ty,....v, T, closed values, then R;([X;>V,]...[x,>V,]1)

Proof. by induction on the derivation

toshow: s:S, and Rg (s) implies R, ((>Vy]...[x,>V,] 1) 5)

= s >" v for some closed value v
By induction, RSZ([xlévl]...[x,\—)v"][x—)v] S,)

+

Ol
by easy Lemma, RSZ((AX:Sy. [X2V]... XDV,] sp))
= RSZ(XDVl [%,PV,] (AX:S;. 85) 5)
[

t

(by definition of R)

R 55,2Vl D5 >va] 1)

