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Type Systems

Lecture 3     Nov. 3rd, 2004
Sebastian Maneth

http://lampwww.epfl.ch/teaching/typeSystems/2004

Today:     … into the types …

1. A Type System for Arithmetic Expressions

2. Proving Type Safety

3. Simply Typed Lambda Calculus

4. Proving Type Safety

5.   Conclusions

A Type System for Arithmetic Expressions
Expr  ::=  true | false | zero
Expr  ::=  if Expr then Expr else Expr
Expr  ::=  succ (Expr)
Expr  ::=  pred (Expr)
Expr  ::=  isZero (Expr)

Val  ::=  true | false | NVal
NVal ::= zero | succ NVal

“Stuck” terms: succ(true)
isZero(false)
if zero then true else false

Cannot rewrite, but are not values.  no semantics = execution error

type sound =  all well-typed programs are free of execution errors

find a Type System for Expr, so that well-typed terms do NOT get stuck!

A Type System for Arithmetic Expressions

The converse will NOT be true:   if true then zero else succ(true)
is not stuck (evaluates to zero), but will not be well-typed!

Introduce two types Bool and Nat, representing Booleans and Numbers.
Every Expr t will be of type Bool or Nat, or will have no type.

t : Bool =    “t has type Bool”

find a Type System for Expr, so that well-typed terms do NOT get stuck!

non-stuck (= free of execution errors)
well-typed
“slack” keep the slack small!
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A Type System for Arithmetic Expressions

The converse will NOT be true:   if true then zero else false
is not stuck (evaluates to zero), but will not be well-typed!

Introduce two types Bool and Nat, representing Booleans and Numbers.
Every Expr t will be of type Bool or Nat, or will have no type.

t : Bool =    “t has type Bool”

find a Type System for Expr, so that well-typed terms do NOT get stuck!

non-stuck (= free of execution errors)
well-typed
“slack” keep the slack small!

typing rules (Type System): true : Bool false : Bool

t1 : Bool t2 : T t3: T

if t1 then t2 else t3 : T

A Type System for Arithmetic Expressions
typing rules: true : Bool false : Bool t1 : Bool t2 : T t3: T

if t1 then t2 else t3 : Tzero : Nat

t1 : Nat
succ t1 : Nat

t1 : Nat
pred t1 : Nat

t1 : Nat
isZero t1 : Bool

Note:   this type system is VERY simple. 

it can be incorporated into the syntax definition (EBNF).

do you see how? 

A Type System for Arithmetic Expressions
typing rules: true : Bool false : Bool t1 : Bool t2 : T t3: T

if t1 then t2 else t3 : Tzero : Nat

t1 : Nat
succ t1 : Nat

t1 : Nat
pred t1 : Nat

typing derivation for  if isZero zero then zero else pred zero

if isZero zero then zero else pred zero : Nat
isZero zero : Bool zero : Nat pred zero : Nat

zero : Nat

t1 : Nat
isZero t1 : Bool

zero : Nat

A Type System for Arithmetic Expressions
How to find a typing derivation?

assume the Expr has some type R; then determine backwards
the required types of the subexpressions, and check them!

1. If  true : R  or  false : R,  then  R = Bool.
2. If  zero : R,  then R = Nat.
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A Type System for Arithmetic Expressions
How to find a typing derivation?

assume the Expr has some type R; then deterimine backwards
the required types of the subexpressions, and check them!

1. If  true : R  or  false : R,  then  R = Bool.
2. If  zero : R,  then R = Nat.

3. If  if t1 then t2 else t3 : R,   then  t1 : Bool,  t2 : R, and t3: R

4. If succ t1 : R  or  pred t1 : R,  then  R = Nat

5. If isZero t1 : R,  then  R = Bool and t1 : Nat

A Type System for Arithmetic Expressions
How to find a typing derivation?

assume the Expr has some type R; then deterimine backwards
the required types of the subexpressions, and check them!

1. If  true : R  or  false : R,  then  R = Bool.
2. If  zero : R,  then R = Nat.

3. If  if t1 then t2 else t3 : R,   then  t1 : Bool,  t2 : R, and t3: R

4. If succ t1 : R  or  pred t1 : R,  then  R = Nat

5. If isZero t1 : R,  then  R = Bool and t1 : Nat must be the same R!!

A Type System for Arithmetic Expressions
How to find a typing derivation?

assume the Expr has some type R; then deterimine backwards
the required types of the subexpressions, and check them!

1. If  true : R  or  false : R,  then  R = Bool.
2. If  zero : R,  then R = Nat.

3. If  if t1 then t2 else t3 : R,   then  t1 : Bool,  t2 : R, and t3: R

4. If succ t1 : R  or  pred t1 : R,  then  R = Nat

5. If isZero t1 : R,  then  R = Bool and t1 : Nat must be the same R!!

Theorem:   Every term has at most one type  (with unique derivation).
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Proof by induction, using INV.L.

What you will learn in this course:

• how to define a type system T (to allow for     
unambiguous implementations)

• how to formally prove that  (P, T)  is type sound

• how to implement a typechecker for T
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What you will learn in this course:

• how to define a type system T (to allow for     
unambiguous implementations)

• how to formally prove that  (P, T)  is type sound

• how to implement a typechecker for T

= type safe

Proving Type Safety
“well-typed terms do not go wrong”

Safety  =  Progress + Preservation

Progress =  A well-typed term is NOT stuck
Preservation =  evaluation preserves well-typedness

well-typed  NOT stuck  either value or 
we can evaluate result is well-typedProgress

Preserve

Proving Type Safety
“well-typed terms do not go wrong”

Progress =  A well-typed term is NOT stuck
Preservation =  evaluation preserves well-typedness

well-typed  NOT stuck  either value or 
we can evaluate result is well-typedProgress

Preserve

Safety  =  Progress + Preservation

Proving Type Safety
Progress Theorem: If t is well-typed, then it is either a value or there

exists a t’ such that t t’. 

Observations: (1)  if t : Bool is a value, then t = true or t = false
(2)  if t : Nat is a value, then t =  succ( … succ (zero) … )

≥ 0Proof.   Induction on t.

t  =  true | false | zero immediate.

t  =  if t1 then t2 else t3 : R,   then  t1 : Bool,  t2 : R, and t3: R    (INV.L.)
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Proving Type Safety
Progress Theorem: If t is well-typed, then it is either a value or there

exists a t’ such that t t’. 

Observations: (1)  if t : Bool is a value, then t = true or t = false
(2)  if t : Nat is a value, then t =  succ( … succ (zero) … )

≥ 0Proof.   Induction on t.

t  =  true | false | zero immediate.

• t1 is value. By (1), t = true or t = false.

Thus, t can evaluate to a t’  (= t2 or t3)!

t  =  if t1 then t2 else t3 : R,   then  t1 : Bool,  t2 : R, and t3: R    (INV.L.)

Proving Type Safety
Progress Theorem: If t is well-typed, then it is either a value or there

exists a t’ such that t t’. 

Observations: (1)  if t : Bool is a value, then t = true or t = false
(2)  if t : Nat is a value, then t =  succ( … succ (zero) … )

≥ 0Proof.   Induction on t.

t  =  true | false | zero immediate.

• t1 is value. By (1), t = true or t = false.

Thus, t can evaluate to a t’  (= t2 or t3)!

• t1 is NOT value. By induction  ∃ t1’ with t1 t1’.

Thus, t can evaluate to a t’  (= if t1’ then ..)!

t  =  if t1 then t2 else t3 : R,   then  t1 : Bool,  t2 : R, and t3: R    (INV.L.)

Proving Type Safety
Progress Theorem: If t is well-typed, then it is either a value or there

exists a t’ such that t t’. 

Observations: (1)  if t : Bool is a value, then t = true or t = false
(2)  if t : Nat is a value, then t =  succ( … succ (zero) … )

≥ 0Proof.   Induction on t.

t  =  true | false | zero immediate.

t  =  succ t1.   By induction, t1 is value or t1 t1’.    By INV.L., t1 : Nat.

• t1 is value. By (2), t1 = succ(.. zero ..).  Hence, t is also a value!

• t1 is NOT value. Then t can evaluate to a t’ (= succ t1’)

Proving Type Safety
Progress Theorem: If t is well-typed, then it is either a value or there

exists a t’ such that t t’. 

Observations: (1)  if t : Bool is a value, then t = true or t = false
(2)  if t : Nat is a value, then t =  succ( … succ (zero) … )

≥ 0Proof.   Induction on t.

t  =  true | false | zero immediate.

• t1 is value. By (2), t1 = succ(.. zero ..). Thus, t can evaluate!

• t1 is NOT value. Then t can evaluate to a t’ (= pred t1’)

t  =  pred t1.   By induction, t1 is value or t1 t1’.    By INV.L., t1 : Nat.
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Proving Type Safety
Progress Theorem: If t is well-typed, then it is either a value or there

exists a t’ such that t t’. 

Observations: (1)  if t : Bool is a value, then t = true or t = false
(2)  if t : Nat is a value, then t =  succ( … succ (zero) … )

≥ 0Proof.   Induction on t.

t  =  true | false | zero immediate.

• t1 is value. By (2), t1 = succ(.. zero ..). Thus, t can evaluate!

• t1 is NOT value. Then t can evaluate to a t’ (= isZero t1’)

t  =  isZero t1.  By induction, t1 is value or t1 t1’.   By INV.L., t1 : Nat.

Proving Type Safety
Preservation Theorem: If  t : T  and  t t’,   then  t’ : T.

t  =  if t1 then t2 else t3 : R,   then  t1 : Bool,  t2 : R, and t3: R    (INV.L.)

t’ =  t2 |  t3 |  if t1’ then t2 else t3,  where t1 t1’

Proving Type Safety
Preservation Theorem: If  t : T  and  t t’,   then  t’ : T.

t  =  if t1 then t2 else t3 : R,   then  t1 : Bool,  t2 : R, and t3: R    (INV.L.)

t’ =  t2 |  t3 |  if t1’ then t2 else t3,  where t1 t1’
: R   : R

By induction, t1’ : Bool.  THUS, t’ : R.

Proving Type Safety
Preservation Theorem: If  t : T  and  t t’,   then  t’ : T.

t  =  if t1 then t2 else t3 : R,   then  t1 : Bool,  t2 : R, and t3: R    (INV.L.)

t’ =  t2 |  t3 |  if t1’ then t2 else t3,  where t1 t1’
: R   : R

By induction, t1’ : Bool.  THUS, t’ : R.

t  =  succ t1.   Thus, succ t1 succ t1’ and t1 t1’.    By INV.L., t1 : Nat.
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Proving Type Safety
Preservation Theorem: If  t : T  and  t t’,   then  t’ : T.

t  =  if t1 then t2 else t3 : R,   then  t1 : Bool,  t2 : R, and t3: R    (INV.L.)

t’ =  t2 |  t3 |  if t1’ then t2 else t3,  where t1 t1’
: R   : R

By induction, t1’ : Bool.  THUS, t’ : R.

t  =  succ t1.   Thus, succ t1 succ t1’ and t1 t1’.    By INV.L., t1 : Nat.

By induction, t1’ : Nat.  THUS, also  succ t1’ : Nat.

Proving Type Safety
Preservation Theorem: If  t : T  and  t t’,   then  t’ : T.

t  =  if t1 then t2 else t3 : R,   then  t1 : Bool,  t2 : R, and t3: R    (INV.L.)

t’ =  t2 |  t3 |  if t1’ then t2 else t3,  where t1 t1’
: R   : R

By induction, t1’ : Bool.  THUS, t’ : R.

t  =  succ t1.   Thus, succ t1 succ t1’ and t1 t1’.    By INV.L., t1 : Nat.

By induction, t1’ : Nat.  THUS, also  succ t1’ : Nat.

Cases     t  =  pred t1 |  isZero t1

Try yourself!!

Simply Typed Lambda Calculus
Imagine the small language λ-Bool, consisting of lambda terms together
with Boolean primitives.

How to define a Type System that is safe (= “well-typed programs 
do not go wrong”)

i.e., we need typing rules for  variables, abstraction, application,
in such a way that we can prove Progress and Preservation.

… and in such a way that the  “slack” is small!  …

BUT, lambda calculus is Turing complete nontrivial properties canNOT
be decided!!! (Rice’s Theorem)

if <long and tricky computation> then true else (λx. x)

Simply Typed Lambda Calculus
The  set of simple types over Bool is the smallest set T such that

1.  Bool ∈ T

2.  if  R1, R2 ∈ T,  then  R1 R2 ∈ T

binds to the right. Thus, R1 R2 R3 means R1 (R2 R3).

How to type  λx.t ?  
= what happens when  t is applied to an argument?

But, what type of arguments to expect??

annotate arguments explicitly.   λx:T1.t

deduce argument type from the body t of the abstraction

explicitly typed langs.

implicitly typed langs.
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Simply Typed Lambda Calculus
We do explicitly typed langs!    Syntax change:    λx:T1.t

typing rule for lambda abstraction:

Γ, x:T1 ` t:T2

determines a  type environment for t

Type Environment  Γ = { (x1, T1), …, (xn, Tn) }    (finite function var Types)

A ` B = under the 
assumption A,    B holds

Γ ` λx:T1.t : T1 T2

Simply Typed Lambda Calculus
We do explicitly typed langs!    Syntax change:    λx:T1.t

typing rule for lambda abstraction:

Γ, x:T1 ` t:T2

determines a  type environment for t

Type Environment  Γ = { (x1, T1), …, (xn, Tn) }    (finite function var Types)

A ` B = under the 
assumption A,    B holds

Γ ` λx:T1.t : T1 T2

“making the  assumption  x:T1 explicit”

Note:  renaming of x in t is needed if x appears in Γ!

Simply Typed Lambda Calculus
Γ, x:T1 ` t:T2

Γ ` λx:T1.t : T1 T2

lambda abstraction

Γ ` t1:T R Γ ` t2:T

Γ ` t1 t2 : R
function application

x:T∈ Γ
Γ ` x : T

variable

a derivation tree:

` (λx:Bool. x) true : Bool

Simply Typed Lambda Calculus
Γ, x:T1 ` t:T2

Γ ` λx:T1.t : T1 T2

lambda abstraction

Γ ` t1:T R Γ ` t2:T

Γ ` t1 t2 : R
function application

x:T∈ Γ
Γ ` x : T

variable

a derivation tree:

` (λx:Bool. x) true : Bool

` λx:Bool. x : Bool Bool ` true:Bool
application
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Simply Typed Lambda Calculus
Γ, x:T1 ` t:T2

Γ ` λx:T1.t : T1 T2

lambda abstraction

Γ ` t1:T R Γ ` t2:T

Γ ` t1 t2 : R
function application

x:T∈ Γ
Γ ` x : T

variable

a derivation tree:

` (λx:Bool. x) true : Bool

` λx:Bool. x : Bool Bool ` true:Bool

x : Bool ` x : Bool

application

abstraction

Simply Typed Lambda Calculus
Γ, x:T1 ` t:T2

Γ ` λx:T1.t : T1 T2

lambda abstraction

Γ ` t1:T R Γ ` t2:T

Γ ` t1 t2 : R
function application

x:T∈ Γ
Γ ` x : T

variable

a derivation tree:

` (λx:Bool. x) true : Bool

` λx:Bool. x : Bool Bool ` true:Bool

x : Bool ` x : Bool

x : Bool ∈ x : Bool

application

abstraction

Proving Type Safety

1.  If  Γ ` x : R,  then  x:R ∈ Γ.
2. If  Γ ` λx:T1.t : R,  then R = T1 R2 for some R2 with  Γ,x:T1 ` t:R2.
3. If  Γ ` t1 t2 : R,    then ∃ T  s.t.   Γ ` t1: T R   and   Γ ` t2 : T.IN

V
. L

.

Theorem:   Every term has at most one type  (with unique derivation).

Observation  (3)  If v is a value of type T1 T2,   then   v =  λx: T1.t2.

Progress Theorem: If  t is closed and well-typed, then it is either a value 
or there exists a t’ such that  t t’. 

Proof.    t =  true | false | if ..    like before!
t =  λx:T1. t1  is a value!

Proving Type Safety

1.  If  Γ ` x : R,  then  x:R ∈ Γ.
2. If  Γ ` λx:T1.t : R,  then R = T1 R2 for some R2 with  Γ,x:T1 ` t:R2.
3. If  Γ ` t1 t2 : R,    then ∃ T  s.t.   Γ ` t1: T R   and   Γ ` t2 : T.IN

V
. L

.

Theorem:   Every term has at most one type  (with unique derivation).

Observation  (3)  If v is a value of type T1 T2,   then   v =  λx: T1.t2.

Progress Theorem: If  t is closed and well-typed, then it is either a value 
or there exists a t’ such that  t t’. 

Proof.    t =  true | false | if ..    like before!
t =  λx:T1. t1  is a value!
t =  t1 t2 : R, then ∃ T  s.t.   ` t1:T R and  ` t2:T.

by induction for t1 and t2:   either a value or can take a step.

If  t1 t1’ then  t t’ (= t1’ t2)

If  t1 value and t2 t2’ then  t t’ (= t1 t2’)
If both are values, then t1 is
abstraction, so can be applied!



10

Proving Type Safety
Preservation of substitution:

If (1)  Γ ` s : S  
(2)  Γ,  x:S `  t : T then Γ ` [ x s ] t : T

Proof.
induction on structure of t.   6 cases

1.  t = z.  If z=x  then  Γ, x:S ` x : T  implies that T=S.
And Γ ` s : S  means that  Γ ` [ x s ] x : T

If z≠x  then  Γ, x:S ` z : T implies that  z:T ∈ Γ. 
Thus  Γ ` z : T.

Proving Type Safety

If (1)  Γ ` s : S  
(2)  Γ,  x:S `  t : T then Γ ` [ x s ] t : T

Proof.
induction on structure of t.   6 cases

2.  t = λy:T2. t1.   By INV.L. T = T2 T1 and  Γ, y:T2 ` t1 : T1.

Since x∉ dom(Γ) and x≠y, weaken    to  Γ, y:T2, x:S ` t1 : T1

and weaken   Γ ` s: S   to  Γ’ ` s: S 
Γ’

Preservation of substitution:

Proving Type Safety

If (1)  Γ ` s : S  
(2)  Γ,  x:S `  t : T then Γ ` [ x s ] t : T

Proof.
induction on structure of t.   6 cases

2.  t = λy:T2. t1.   By INV.L. T = T2 T1 and  Γ, y:T2 ` t1 : T1.

Since x∉ dom(Γ) and x≠y, weaken    to  Γ, y:T2, x:S ` t1 : T1

and weaken   Γ ` s: S   to  Γ’ ` s: S 
Γ’

By induction,    Γ’ ` [ x s ] t1 : T1.
abstraction

Γ ` λy:T2. [ x s ]t1 : T2 T1.

Preservation of substitution:

Proving Type Safety

If (1)  Γ ` s : S  
(2)  Γ,  x:S `  t : T then Γ ` [ x s ] t : T

Proof.
induction on structure of t.   6 cases

2.  t = λy:T2. t1.   By INV.L. T = T2 T1 and  Γ, y:T2 ` t1 : T1.

Since x∉ dom(Γ) and x≠y, weaken    to  Γ, y:T2, x:S ` t1 : T1

and weaken   Γ ` s: S   to  Γ’ ` s: S 
Γ’

By induction,    Γ’ ` [ x s ] t1 : T1.
abstraction

Γ ` λy:T2. [ x s ]t1 : T2 T1.

= Γ ` [ x s ] t : T

Preservation of substitution:
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Proving Type Safety

If (1)  Γ ` s : S  
(2)  Γ,  x:S `  t : T then Γ ` [ x s ] t : T

Proof.
induction on structure of t.   6 cases

3.  t = t1 t2.   By INV.L. Γ, x:S ` t : T implies  

Γ, x:S ` t1 : T2 T1
Γ, x:S ` t2 : T2                    with T = T1

Γ ` [ x s ] t1 : T2 T1
Γ ` [ x s ] t2 : T2           

By induction (2x):

application
Γ ` [ x s]t1 [ x s ]t2 : T1

= Γ ` [ x s ] t : T

Preservation of substitution:

Proving Type Safety

If (1)  Γ ` s : S  
(2)  Γ,  x:S `  t : T then Γ ` [ x s ] t : T

Proof.
induction on structure of t.   6 cases

4. t = true.   By INV.L., T = Bool. 
[ x s ] t = true,  and       Γ ` true : Bool    (∀Γ)

5.  t = false. Same thing.

6.  t = if t1 then t2 else t3. 

by INV.L.
Γ, x:S ` t1 : Bool
Γ, x:S ` t2 : T
Γ, x:S ` t3 : T

Γ, x:S ` [ x s ]t1 : Bool
Γ, x:S ` [ x s ]t2 : T
Γ, x:S ` [ x s ]t3 : T

induct.

Γ ` [ x s ]if t1 then t2 else t3 : T

Preservation of substitution:

Proving Type Safety
Preservation.    If Γ ` t : T  and t t’,     then Γ ` t’ : T.

Proof.  Induction on the structure of t.

t  =   z | λy:T1. t1 | true | false  nothing to be done (@ t’) 

t  =   if t1 then t2 else t3 exactly like before!

t  =   t1 t2.  By INV.L. Γ ` t : T implies that T=T1,   Γ ` t1: T2 T1
and   Γ ` t2 : T2

(1) t1 t1’.  By induction  Γ ` t1’: T2 T1

Proving Type Safety
Preservation.    If Γ ` t : T  and t t’,     then Γ ` t’ : T.

Proof.  Induction on the structure of t.

t  =   z | λy:T1. t1 | true | false  nothing to be done (@ t’) 

t  =   if t1 then t2 else t3 exactly like before!

t  =   t1 t2.  By INV.L. Γ ` t : T implies that T=T1,   Γ ` t1: T2 T1
and   Γ ` t2 : T2

(1) t1 t1’.  By induction  Γ ` t1’: T2 T1

Γ ` t1’ t2 : T1
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Proving Type Safety
Preservation.    If Γ ` t : T  and t t’,     then Γ ` t’ : T.

Proof.  Induction on the structure of t.

t  =   z | λy:T1. t1 | true | false  nothing to be done (@ t’) 

t  =   if t1 then t2 else t3 exactly like before!

t  =   t1 t2.  By INV.L. Γ ` t : T implies that T=T1,   Γ ` t1: T2 T1
and   Γ ` t2 : T2

(1) t1 t1’.  By induction  Γ ` t1’: T2 T1

Γ ` t1’ t2 : T1

t’  : T

(2)  t1 value, t2 t2’.  Same as (1)!

Proving Type Safety
Preservation.    If Γ ` t : T  and t t’,     then Γ ` t’ : T.

Proof.  Induction on the structure of t.

t  =   z | λy:T1. t1 | true | false  nothing to be done (@ t’) 

t  =   if t1 then t2 else t3 exactly like before!

t  =   t1 t2.  By INV.L. Γ ` t : T implies that T=T1,   Γ ` t1: T2 T1
and   Γ ` t2 : T2

(3)  t1, t2 values. Then t1 = λx:T2. t12.  By INV.L.   Γ, x:T2 ` t12 : T1

t  t’ = [ x t2 ] t12

Proving Type Safety
Preservation.    If Γ ` t : T  and t t’,     then Γ ` t’ : T.

Proof.  Induction on the structure of t.

t  =   z | λy:T1. t1 | true | false  nothing to be done (@ t’) 

t  =   if t1 then t2 else t3 exactly like before!

t  =   t1 t2.  By INV.L. Γ ` t : T implies that T=T1,   Γ ` t1: T2 T1
and   Γ ` t2 : T2

(3)  t1, t2 values. Then t1 = λx:T2. t12.  By INV.L.   Γ, x:T2 ` t12 : T1

t  t’ = [ x t2 ] t12
Preserv. of subst.

Γ ` [ x t2 ] t : T1

Conclusions
TODAY: implement simply typed lambda caculus with let/fix

and types Bool and Nat.

To avoid repetitions and to increase readabiliby: 
give names to subexpressions!

let x=t1 in t2

similar to  (λx:T1. t2) t1 [ x t1 ] t2

but this needs type T1 explicitely!

Γ ` t1 : T1 Γ, x:T1 ` t2 : T2

Γ ` let x=t1 in t2  :  T2

evaluation easy: (1) t1 t1’
(2) t1 value:   [ x t1 ] t2
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Conclusions
TODAY: implement simply typed lambda caculus with let/fix

and types Bool and Nat.

To be able to type recursive functions:  add  fix to the language.

fix (λfact. factdef) 3  *  6

Note fix :=  λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))  canNOT be
typed in the simply typed lambda calculus.   Can you find out WHY??

Γ ` t1 : T1 T1

Γ ` fix t1 : T1

evaluation (1) t1 t1’
(2) t1 = λx:T1 : t2   then  [ x fix (λx:T1. t2) ] t2

‘unroll’/expand once

Conclusions
TODAY: implement simply typed lambda caculus with let/letrec

and types Bool and Nat.

To be able to type recursive functions:  add  letrec to the language.

evaluation (1) t1 t1’
(2) t1 = λx:T1 : t2   then  [ x fix (λx:T1. t2) ] t2

‘unroll’/expand once

letrec x:T1=t1 in t2 :=    let x=fix(λx:T1.t1) in t2

let rec fact:Num->Num =
\x:Num. if (isZero x) then (succ zero) else …

(fix: only internally, for typing!)

language 
of 
today


