
1

Type Systems

Lecture 3 Nov. 3rd, 2004
Sebastian Maneth

http://lampwww.epfl.ch/teaching/typeSystems/2004

Today: … into the types …

1. A Type System for Arithmetic Expressions

2. Proving Type Safety

3. Simply Typed Lambda Calculus

4. Proving Type Safety

5. Conclusions

A Type System for Arithmetic Expressions
Expr ::= true | false | zero
Expr ::= if Expr then Expr else Expr
Expr ::= succ (Expr)
Expr ::= pred (Expr)
Expr ::= isZero (Expr)

Val ::= true | false | NVal
NVal ::= zero | succ NVal

“Stuck” terms: succ(true)
isZero(false)
if zero then true else false

Cannot rewrite, but are not values. no semantics = execution error

type sound = all well-typed programs are free of execution errors

find a Type System for Expr, so that well-typed terms do NOT get stuck!

A Type System for Arithmetic Expressions

The converse will NOT be true: if true then zero else succ(true)
is not stuck (evaluates to zero), but will not be well-typed!

Introduce two types Bool and Nat, representing Booleans and Numbers.
Every Expr t will be of type Bool or Nat, or will have no type.

t : Bool = “t has type Bool”

find a Type System for Expr, so that well-typed terms do NOT get stuck!

non-stuck (= free of execution errors)
well-typed
“slack” keep the slack small!

2

A Type System for Arithmetic Expressions

The converse will NOT be true: if true then zero else false
is not stuck (evaluates to zero), but will not be well-typed!

Introduce two types Bool and Nat, representing Booleans and Numbers.
Every Expr t will be of type Bool or Nat, or will have no type.

t : Bool = “t has type Bool”

find a Type System for Expr, so that well-typed terms do NOT get stuck!

non-stuck (= free of execution errors)
well-typed
“slack” keep the slack small!

typing rules (Type System): true : Bool false : Bool

t1 : Bool t2 : T t3: T

if t1 then t2 else t3 : T

A Type System for Arithmetic Expressions
typing rules: true : Bool false : Bool t1 : Bool t2 : T t3: T

if t1 then t2 else t3 : Tzero : Nat

t1 : Nat
succ t1 : Nat

t1 : Nat
pred t1 : Nat

t1 : Nat
isZero t1 : Bool

Note: this type system is VERY simple.

it can be incorporated into the syntax definition (EBNF).

do you see how?

A Type System for Arithmetic Expressions
typing rules: true : Bool false : Bool t1 : Bool t2 : T t3: T

if t1 then t2 else t3 : Tzero : Nat

t1 : Nat
succ t1 : Nat

t1 : Nat
pred t1 : Nat

typing derivation for if isZero zero then zero else pred zero

if isZero zero then zero else pred zero : Nat
isZero zero : Bool zero : Nat pred zero : Nat

zero : Nat

t1 : Nat
isZero t1 : Bool

zero : Nat

A Type System for Arithmetic Expressions
How to find a typing derivation?

assume the Expr has some type R; then determine backwards
the required types of the subexpressions, and check them!

1. If true : R or false : R, then R = Bool.
2. If zero : R, then R = Nat.

3

A Type System for Arithmetic Expressions
How to find a typing derivation?

assume the Expr has some type R; then deterimine backwards
the required types of the subexpressions, and check them!

1. If true : R or false : R, then R = Bool.
2. If zero : R, then R = Nat.

3. If if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and t3: R

4. If succ t1 : R or pred t1 : R, then R = Nat

5. If isZero t1 : R, then R = Bool and t1 : Nat

A Type System for Arithmetic Expressions
How to find a typing derivation?

assume the Expr has some type R; then deterimine backwards
the required types of the subexpressions, and check them!

1. If true : R or false : R, then R = Bool.
2. If zero : R, then R = Nat.

3. If if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and t3: R

4. If succ t1 : R or pred t1 : R, then R = Nat

5. If isZero t1 : R, then R = Bool and t1 : Nat must be the same R!!

A Type System for Arithmetic Expressions
How to find a typing derivation?

assume the Expr has some type R; then deterimine backwards
the required types of the subexpressions, and check them!

1. If true : R or false : R, then R = Bool.
2. If zero : R, then R = Nat.

3. If if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and t3: R

4. If succ t1 : R or pred t1 : R, then R = Nat

5. If isZero t1 : R, then R = Bool and t1 : Nat must be the same R!!

Theorem: Every term has at most one type (with unique derivation).

IN
V

E
R

S
IO

N
 L

E
M

M
A

Proof by induction, using INV.L.

What you will learn in this course:

• how to define a type system T (to allow for
unambiguous implementations)

• how to formally prove that (P, T) is type sound

• how to implement a typechecker for T

4

What you will learn in this course:

• how to define a type system T (to allow for
unambiguous implementations)

• how to formally prove that (P, T) is type sound

• how to implement a typechecker for T

= type safe

Proving Type Safety
“well-typed terms do not go wrong”

Safety = Progress + Preservation

Progress = A well-typed term is NOT stuck
Preservation = evaluation preserves well-typedness

well-typed NOT stuck either value or
we can evaluate result is well-typedProgress

Preserve

Proving Type Safety
“well-typed terms do not go wrong”

Progress = A well-typed term is NOT stuck
Preservation = evaluation preserves well-typedness

well-typed NOT stuck either value or
we can evaluate result is well-typedProgress

Preserve

Safety = Progress + Preservation

Proving Type Safety
Progress Theorem: If t is well-typed, then it is either a value or there

exists a t’ such that t t’.

Observations: (1) if t : Bool is a value, then t = true or t = false
(2) if t : Nat is a value, then t = succ(… succ (zero) …)

≥ 0Proof. Induction on t.

t = true | false | zero immediate.

t = if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and t3: R (INV.L.)

5

Proving Type Safety
Progress Theorem: If t is well-typed, then it is either a value or there

exists a t’ such that t t’.

Observations: (1) if t : Bool is a value, then t = true or t = false
(2) if t : Nat is a value, then t = succ(… succ (zero) …)

≥ 0Proof. Induction on t.

t = true | false | zero immediate.

• t1 is value. By (1), t = true or t = false.

Thus, t can evaluate to a t’ (= t2 or t3)!

t = if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and t3: R (INV.L.)

Proving Type Safety
Progress Theorem: If t is well-typed, then it is either a value or there

exists a t’ such that t t’.

Observations: (1) if t : Bool is a value, then t = true or t = false
(2) if t : Nat is a value, then t = succ(… succ (zero) …)

≥ 0Proof. Induction on t.

t = true | false | zero immediate.

• t1 is value. By (1), t = true or t = false.

Thus, t can evaluate to a t’ (= t2 or t3)!

• t1 is NOT value. By induction ∃ t1’ with t1 t1’.

Thus, t can evaluate to a t’ (= if t1’ then ..)!

t = if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and t3: R (INV.L.)

Proving Type Safety
Progress Theorem: If t is well-typed, then it is either a value or there

exists a t’ such that t t’.

Observations: (1) if t : Bool is a value, then t = true or t = false
(2) if t : Nat is a value, then t = succ(… succ (zero) …)

≥ 0Proof. Induction on t.

t = true | false | zero immediate.

t = succ t1. By induction, t1 is value or t1 t1’. By INV.L., t1 : Nat.

• t1 is value. By (2), t1 = succ(.. zero ..). Hence, t is also a value!

• t1 is NOT value. Then t can evaluate to a t’ (= succ t1’)

Proving Type Safety
Progress Theorem: If t is well-typed, then it is either a value or there

exists a t’ such that t t’.

Observations: (1) if t : Bool is a value, then t = true or t = false
(2) if t : Nat is a value, then t = succ(… succ (zero) …)

≥ 0Proof. Induction on t.

t = true | false | zero immediate.

• t1 is value. By (2), t1 = succ(.. zero ..). Thus, t can evaluate!

• t1 is NOT value. Then t can evaluate to a t’ (= pred t1’)

t = pred t1. By induction, t1 is value or t1 t1’. By INV.L., t1 : Nat.

6

Proving Type Safety
Progress Theorem: If t is well-typed, then it is either a value or there

exists a t’ such that t t’.

Observations: (1) if t : Bool is a value, then t = true or t = false
(2) if t : Nat is a value, then t = succ(… succ (zero) …)

≥ 0Proof. Induction on t.

t = true | false | zero immediate.

• t1 is value. By (2), t1 = succ(.. zero ..). Thus, t can evaluate!

• t1 is NOT value. Then t can evaluate to a t’ (= isZero t1’)

t = isZero t1. By induction, t1 is value or t1 t1’. By INV.L., t1 : Nat.

Proving Type Safety
Preservation Theorem: If t : T and t t’, then t’ : T.

t = if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and t3: R (INV.L.)

t’ = t2 | t3 | if t1’ then t2 else t3, where t1 t1’

Proving Type Safety
Preservation Theorem: If t : T and t t’, then t’ : T.

t = if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and t3: R (INV.L.)

t’ = t2 | t3 | if t1’ then t2 else t3, where t1 t1’
: R : R

By induction, t1’ : Bool. THUS, t’ : R.

Proving Type Safety
Preservation Theorem: If t : T and t t’, then t’ : T.

t = if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and t3: R (INV.L.)

t’ = t2 | t3 | if t1’ then t2 else t3, where t1 t1’
: R : R

By induction, t1’ : Bool. THUS, t’ : R.

t = succ t1. Thus, succ t1 succ t1’ and t1 t1’. By INV.L., t1 : Nat.

7

Proving Type Safety
Preservation Theorem: If t : T and t t’, then t’ : T.

t = if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and t3: R (INV.L.)

t’ = t2 | t3 | if t1’ then t2 else t3, where t1 t1’
: R : R

By induction, t1’ : Bool. THUS, t’ : R.

t = succ t1. Thus, succ t1 succ t1’ and t1 t1’. By INV.L., t1 : Nat.

By induction, t1’ : Nat. THUS, also succ t1’ : Nat.

Proving Type Safety
Preservation Theorem: If t : T and t t’, then t’ : T.

t = if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and t3: R (INV.L.)

t’ = t2 | t3 | if t1’ then t2 else t3, where t1 t1’
: R : R

By induction, t1’ : Bool. THUS, t’ : R.

t = succ t1. Thus, succ t1 succ t1’ and t1 t1’. By INV.L., t1 : Nat.

By induction, t1’ : Nat. THUS, also succ t1’ : Nat.

Cases t = pred t1 | isZero t1

Try yourself!!

Simply Typed Lambda Calculus
Imagine the small language λ-Bool, consisting of lambda terms together
with Boolean primitives.

How to define a Type System that is safe (= “well-typed programs
do not go wrong”)

i.e., we need typing rules for variables, abstraction, application,
in such a way that we can prove Progress and Preservation.

… and in such a way that the “slack” is small! …

BUT, lambda calculus is Turing complete nontrivial properties canNOT
be decided!!! (Rice’s Theorem)

if <long and tricky computation> then true else (λx. x)

Simply Typed Lambda Calculus
The set of simple types over Bool is the smallest set T such that

1. Bool ∈ T

2. if R1, R2 ∈ T, then R1 R2 ∈ T

binds to the right. Thus, R1 R2 R3 means R1 (R2 R3).

How to type λx.t ?
= what happens when t is applied to an argument?

But, what type of arguments to expect??

annotate arguments explicitly. λx:T1.t

deduce argument type from the body t of the abstraction

explicitly typed langs.

implicitly typed langs.

8

Simply Typed Lambda Calculus
We do explicitly typed langs! Syntax change: λx:T1.t

typing rule for lambda abstraction:

Γ, x:T1 ` t:T2

determines a type environment for t

Type Environment Γ = { (x1, T1), …, (xn, Tn) } (finite function var Types)

A ` B = under the
assumption A, B holds

Γ ` λx:T1.t : T1 T2

Simply Typed Lambda Calculus
We do explicitly typed langs! Syntax change: λx:T1.t

typing rule for lambda abstraction:

Γ, x:T1 ` t:T2

determines a type environment for t

Type Environment Γ = { (x1, T1), …, (xn, Tn) } (finite function var Types)

A ` B = under the
assumption A, B holds

Γ ` λx:T1.t : T1 T2

“making the assumption x:T1 explicit”

Note: renaming of x in t is needed if x appears in Γ!

Simply Typed Lambda Calculus
Γ, x:T1 ` t:T2

Γ ` λx:T1.t : T1 T2

lambda abstraction

Γ ` t1:T R Γ ` t2:T

Γ ` t1 t2 : R
function application

x:T∈ Γ
Γ ` x : T

variable

a derivation tree:

` (λx:Bool. x) true : Bool

Simply Typed Lambda Calculus
Γ, x:T1 ` t:T2

Γ ` λx:T1.t : T1 T2

lambda abstraction

Γ ` t1:T R Γ ` t2:T

Γ ` t1 t2 : R
function application

x:T∈ Γ
Γ ` x : T

variable

a derivation tree:

` (λx:Bool. x) true : Bool

` λx:Bool. x : Bool Bool ` true:Bool
application

9

Simply Typed Lambda Calculus
Γ, x:T1 ` t:T2

Γ ` λx:T1.t : T1 T2

lambda abstraction

Γ ` t1:T R Γ ` t2:T

Γ ` t1 t2 : R
function application

x:T∈ Γ
Γ ` x : T

variable

a derivation tree:

` (λx:Bool. x) true : Bool

` λx:Bool. x : Bool Bool ` true:Bool

x : Bool ` x : Bool

application

abstraction

Simply Typed Lambda Calculus
Γ, x:T1 ` t:T2

Γ ` λx:T1.t : T1 T2

lambda abstraction

Γ ` t1:T R Γ ` t2:T

Γ ` t1 t2 : R
function application

x:T∈ Γ
Γ ` x : T

variable

a derivation tree:

` (λx:Bool. x) true : Bool

` λx:Bool. x : Bool Bool ` true:Bool

x : Bool ` x : Bool

x : Bool ∈ x : Bool

application

abstraction

Proving Type Safety

1. If Γ ` x : R, then x:R ∈ Γ.
2. If Γ ` λx:T1.t : R, then R = T1 R2 for some R2 with Γ,x:T1 ` t:R2.
3. If Γ ` t1 t2 : R, then ∃ T s.t. Γ ` t1: T R and Γ ` t2 : T.IN

V
. L

.

Theorem: Every term has at most one type (with unique derivation).

Observation (3) If v is a value of type T1 T2, then v = λx: T1.t2.

Progress Theorem: If t is closed and well-typed, then it is either a value
or there exists a t’ such that t t’.

Proof. t = true | false | if .. like before!
t = λx:T1. t1 is a value!

Proving Type Safety

1. If Γ ` x : R, then x:R ∈ Γ.
2. If Γ ` λx:T1.t : R, then R = T1 R2 for some R2 with Γ,x:T1 ` t:R2.
3. If Γ ` t1 t2 : R, then ∃ T s.t. Γ ` t1: T R and Γ ` t2 : T.IN

V
. L

.

Theorem: Every term has at most one type (with unique derivation).

Observation (3) If v is a value of type T1 T2, then v = λx: T1.t2.

Progress Theorem: If t is closed and well-typed, then it is either a value
or there exists a t’ such that t t’.

Proof. t = true | false | if .. like before!
t = λx:T1. t1 is a value!
t = t1 t2 : R, then ∃ T s.t. ` t1:T R and ` t2:T.

by induction for t1 and t2: either a value or can take a step.

If t1 t1’ then t t’ (= t1’ t2)

If t1 value and t2 t2’ then t t’ (= t1 t2’)
If both are values, then t1 is
abstraction, so can be applied!

10

Proving Type Safety
Preservation of substitution:

If (1) Γ ` s : S
(2) Γ, x:S ` t : T then Γ ` [x s] t : T

Proof.
induction on structure of t. 6 cases

1. t = z. If z=x then Γ, x:S ` x : T implies that T=S.
And Γ ` s : S means that Γ ` [x s] x : T

If z≠x then Γ, x:S ` z : T implies that z:T ∈ Γ.
Thus Γ ` z : T.

Proving Type Safety

If (1) Γ ` s : S
(2) Γ, x:S ` t : T then Γ ` [x s] t : T

Proof.
induction on structure of t. 6 cases

2. t = λy:T2. t1. By INV.L. T = T2 T1 and Γ, y:T2 ` t1 : T1.

Since x∉ dom(Γ) and x≠y, weaken to Γ, y:T2, x:S ` t1 : T1

and weaken Γ ` s: S to Γ’ ` s: S
Γ’

Preservation of substitution:

Proving Type Safety

If (1) Γ ` s : S
(2) Γ, x:S ` t : T then Γ ` [x s] t : T

Proof.
induction on structure of t. 6 cases

2. t = λy:T2. t1. By INV.L. T = T2 T1 and Γ, y:T2 ` t1 : T1.

Since x∉ dom(Γ) and x≠y, weaken to Γ, y:T2, x:S ` t1 : T1

and weaken Γ ` s: S to Γ’ ` s: S
Γ’

By induction, Γ’ ` [x s] t1 : T1.
abstraction

Γ ` λy:T2. [x s]t1 : T2 T1.

Preservation of substitution:

Proving Type Safety

If (1) Γ ` s : S
(2) Γ, x:S ` t : T then Γ ` [x s] t : T

Proof.
induction on structure of t. 6 cases

2. t = λy:T2. t1. By INV.L. T = T2 T1 and Γ, y:T2 ` t1 : T1.

Since x∉ dom(Γ) and x≠y, weaken to Γ, y:T2, x:S ` t1 : T1

and weaken Γ ` s: S to Γ’ ` s: S
Γ’

By induction, Γ’ ` [x s] t1 : T1.
abstraction

Γ ` λy:T2. [x s]t1 : T2 T1.

= Γ ` [x s] t : T

Preservation of substitution:

11

Proving Type Safety

If (1) Γ ` s : S
(2) Γ, x:S ` t : T then Γ ` [x s] t : T

Proof.
induction on structure of t. 6 cases

3. t = t1 t2. By INV.L. Γ, x:S ` t : T implies

Γ, x:S ` t1 : T2 T1
Γ, x:S ` t2 : T2 with T = T1

Γ ` [x s] t1 : T2 T1
Γ ` [x s] t2 : T2

By induction (2x):

application
Γ ` [x s]t1 [x s]t2 : T1

= Γ ` [x s] t : T

Preservation of substitution:

Proving Type Safety

If (1) Γ ` s : S
(2) Γ, x:S ` t : T then Γ ` [x s] t : T

Proof.
induction on structure of t. 6 cases

4. t = true. By INV.L., T = Bool.
[x s] t = true, and Γ ` true : Bool (∀Γ)

5. t = false. Same thing.

6. t = if t1 then t2 else t3.

by INV.L.
Γ, x:S ` t1 : Bool
Γ, x:S ` t2 : T
Γ, x:S ` t3 : T

Γ, x:S ` [x s]t1 : Bool
Γ, x:S ` [x s]t2 : T
Γ, x:S ` [x s]t3 : T

induct.

Γ ` [x s]if t1 then t2 else t3 : T

Preservation of substitution:

Proving Type Safety
Preservation. If Γ ` t : T and t t’, then Γ ` t’ : T.

Proof. Induction on the structure of t.

t = z | λy:T1. t1 | true | false nothing to be done (@ t’)

t = if t1 then t2 else t3 exactly like before!

t = t1 t2. By INV.L. Γ ` t : T implies that T=T1, Γ ` t1: T2 T1
and Γ ` t2 : T2

(1) t1 t1’. By induction Γ ` t1’: T2 T1

Proving Type Safety
Preservation. If Γ ` t : T and t t’, then Γ ` t’ : T.

Proof. Induction on the structure of t.

t = z | λy:T1. t1 | true | false nothing to be done (@ t’)

t = if t1 then t2 else t3 exactly like before!

t = t1 t2. By INV.L. Γ ` t : T implies that T=T1, Γ ` t1: T2 T1
and Γ ` t2 : T2

(1) t1 t1’. By induction Γ ` t1’: T2 T1

Γ ` t1’ t2 : T1

12

Proving Type Safety
Preservation. If Γ ` t : T and t t’, then Γ ` t’ : T.

Proof. Induction on the structure of t.

t = z | λy:T1. t1 | true | false nothing to be done (@ t’)

t = if t1 then t2 else t3 exactly like before!

t = t1 t2. By INV.L. Γ ` t : T implies that T=T1, Γ ` t1: T2 T1
and Γ ` t2 : T2

(1) t1 t1’. By induction Γ ` t1’: T2 T1

Γ ` t1’ t2 : T1

t’ : T

(2) t1 value, t2 t2’. Same as (1)!

Proving Type Safety
Preservation. If Γ ` t : T and t t’, then Γ ` t’ : T.

Proof. Induction on the structure of t.

t = z | λy:T1. t1 | true | false nothing to be done (@ t’)

t = if t1 then t2 else t3 exactly like before!

t = t1 t2. By INV.L. Γ ` t : T implies that T=T1, Γ ` t1: T2 T1
and Γ ` t2 : T2

(3) t1, t2 values. Then t1 = λx:T2. t12. By INV.L. Γ, x:T2 ` t12 : T1

t t’ = [x t2] t12

Proving Type Safety
Preservation. If Γ ` t : T and t t’, then Γ ` t’ : T.

Proof. Induction on the structure of t.

t = z | λy:T1. t1 | true | false nothing to be done (@ t’)

t = if t1 then t2 else t3 exactly like before!

t = t1 t2. By INV.L. Γ ` t : T implies that T=T1, Γ ` t1: T2 T1
and Γ ` t2 : T2

(3) t1, t2 values. Then t1 = λx:T2. t12. By INV.L. Γ, x:T2 ` t12 : T1

t t’ = [x t2] t12
Preserv. of subst.

Γ ` [x t2] t : T1

Conclusions
TODAY: implement simply typed lambda caculus with let/fix

and types Bool and Nat.

To avoid repetitions and to increase readabiliby:
give names to subexpressions!

let x=t1 in t2

similar to (λx:T1. t2) t1 [x t1] t2

but this needs type T1 explicitely!

Γ ` t1 : T1 Γ, x:T1 ` t2 : T2

Γ ` let x=t1 in t2 : T2

evaluation easy: (1) t1 t1’
(2) t1 value: [x t1] t2

13

Conclusions
TODAY: implement simply typed lambda caculus with let/fix

and types Bool and Nat.

To be able to type recursive functions: add fix to the language.

fix (λfact. factdef) 3 * 6

Note fix := λf. (λx. f (λy. x x y)) (λx. f (λy. x x y)) canNOT be
typed in the simply typed lambda calculus. Can you find out WHY??

Γ ` t1 : T1 T1

Γ ` fix t1 : T1

evaluation (1) t1 t1’
(2) t1 = λx:T1 : t2 then [x fix (λx:T1. t2)] t2

‘unroll’/expand once

Conclusions
TODAY: implement simply typed lambda caculus with let/letrec

and types Bool and Nat.

To be able to type recursive functions: add letrec to the language.

evaluation (1) t1 t1’
(2) t1 = λx:T1 : t2 then [x fix (λx:T1. t2)] t2

‘unroll’/expand once

letrec x:T1=t1 in t2 := let x=fix(λx:T1.t1) in t2

let rec fact:Num->Num =
\x:Num. if (isZero x) then (succ zero) else …

(fix: only internally, for typing!)

language
of
today

