" O
Today: ... into the types ...

1. A Type System for Arithmetic Expressions

2. Proving Type Safety

3. Simply Typed Lambda Calculus

4. Proving Type Safety
Lecture 3 Nov. 3rd, 2004 5.

Conclusions
Sebastian Maneth
http://lampwww.epfl.ch/teaching/typeSystems/2004
" JE " JE
A Type System for Arithmetic Expressions A Type System for Arithmetic Expressions
- find a Type System for Expr, so that well-typed terms do NOT get stuck!
Expr ::= true | false | zero .

if Expr then Expr else Expr The converse will NOT be true: if true then zero else succ(true)
succ (Expr) is not stuck (evaluates to zero), but will not be well-typed!

pred (Expn) Val = true | false | Nval non-stuck (= free of execution errors)
well-typed

= isZero (Expr) NVal ::= zero | succ NVal @
“Stuck” terms: succ(true) | “slack”

iszero(false)

- keep the slack small!

if zero then true else false Introduce two types Bool and Nat, representing Booleans and Numbers.

Cannot rewrite, but are not values. = no semantics = execution error Every Expr t will be of type Bool or Nat, or will have no type.

t:Bool = “thastype Bool”
type sound = all well-typed programs are free of execution errors

-> find a Type System for Expr, so that well-typed terms do NOT get stuck!

" JEE
A Type System for Arithmetic Expressions
- find a Type System for Expr, so that well-typed terms do NOT get stuck!

The converse will NOT be true: if true then zero else false
is not stuck (evaluates to zero), but will not be well-typed!

non-stuck (= free of execution errors)

well-typed
| “slack”

- keep the slack small!

" JEE
A Type System for Arithmetic Expressions

typing rules: true : Bool false : Bool ty:Bool 4T T
zero : Nat ift, thent,elsety: T
t; : Nat t; : Nat t; : Nat
succ t, : Nat predt, : Nat iszerot, : Bool

Introduce two types Bool and Nat, representing Booleans and Numbers.
Every Expr t will be of type Bool or Nat, or will have no type.

t:Bool = “thas type Bool”
typing rules (Type System): true : Bool false : Bool
ty:Bool t: T 3T
ift, thent,elset;: T

Note: this type system is VERY simple.
-> it can be incorporated into the syntax definition (EBNF).

do you see how?

" JEE
A Type System for Arithmetic Expressions

typing rules: true : Bool false : Bool ty:Bool t: Tty T
zero : Nat ift thent,elsety: T
t, : Nat t, : Nat t, : Nat
succ t; : Nat predt, : Nat iszerot, : Bool

typing derivation for if iszero zero then zero else pred zero

zero : Nat zero : Nat
iszero zero : Bool zero : Nat pred zero:Nat

if iszero zero then zero else pred zero:Nat

" JEE
A Type System for Arithmetic Expressions

How to find a typing derivation?

- assume the Expr has some type R; then determine backwards
the required types of the subexpressions, and check them!

1.1f true:R or false:R, then R=Bool.
2.1f zero:R, then R = Nat.

" JEE
A Type System for Arithmetic Expressions
How to find a typing derivation?
- assume the Expr has some type R; then deterimine backwards

the required types of the subexpressions, and check them!

1.If true:R or false:R, then R =Bool.
2.If zero:R, then R = Nat.
3.1f ift, thent,elset;: R, then t;:Bool, t,: R, and t;: R

4.Ifsucct,:R or predt,:R, then R=Nat
5.1fiszerot, : R, then R=Boolandt,: Nat

" JEE
A Type System for Arithmetic Expressions
How to find a typing derivation?
-> assume the Expr has some type R; then deterimine backwards

the required types of the subexpressions, and check them!

1.If true:R or false:R, then R =Bool.
2.If zero:R, then R = Nat.
3.1f ift, thent,elset;: R, then t,:Bool, t,: R, and t;: R

4.If succt;:R or predt,:R, then R =Nat

. 1]
5.1fisZerot,: R, then R =Boolandt,: Nat must be the same R!!

" JEE
A Type System for Arithmetic Expressions
How to find a typing derivation?
- assume the Expr has some type R; then deterimine backwards

the required types of the subexpressions, and check them!

1.1f true:R or false:R, then R=Bool.
2.1f zero:R, then R = Nat.
3.If ift thent,elset;: R, then t;:Bool, t,: R, and t;: R

4.ifsucct,:R or predt,:R, then R=Nat

. 1]
5.1fiszerot, : R, then R=Bool andt, : Nat must be the same R

INVERSION LEMMA

Theorem: Every term has at most one type (with unique derivation).

Proof by induction, using INV.L.

" JEE
What you will learn in this course:

+ how to define a type system T (to allow for
unambiguous implementations)

 how to formally prove that (P, T) is type sound

» how to implement a typechecker for T

" JEE
What you will learn in this course:

+ how to define a type system T (to allow for
unambiguous implementations)

* how to formally prove that (P, T) is type sound
= type safe

* how to implement a typechecker for T

" JE
Proving Type Safety
“well-typed terms do not go wrong”
Safety = Progress + Preservation
Progress = A well-typed term is NOT stuck

Preservation = evaluation preserves well-typedness

well-typed - NOT stuck - either value or
Progress we can evaluate > result is well-typed
Preserve

" JEE
Proving Type Safety
“well-typed terms do not go wrong”
Safety = Progress + Preservation
Progress = A well-typed term is NOT stuck

Preservation = evaluation preserves well-typedness

well-typed - NOT stuck -> either value or
Progress we can evaluate - result is well-typed
Preserve ‘

" JEE
Proving Type Safety

Progress Theorem: If t is well-typed, then it is either a value or there
exists a t' such thatt > t.

Observations: (1) ift: Bool is a value, thent = true ort = false

(2) ift: Natis a value, thent= succ(... succ (zero)...)
[
Proof. Induction ont. >0

t = true|false|zero - immediate.

t = ift thent,elset;: R, then t,:Bool, t,:R,andt;; R (INV.L)

" JEE
Proving Type Safety

Progress Theorem: If t is well-typed, then it is either a value or there
exists at' such thatt > t.

Observations: (1) if t: Bool is a value, thent = true ort= false
(2) ift: Natis a value, thent= succ(... succ (zero)...)
e —

Proof. Induction on t. 20

t = true|false|zero - immediate.

t

ift, thent,elset;: R, then t;:Bool, t,:R,andt;; R (INV.L)

* t,is value. By (1), t = true ort = false.
Thus, tcan evaluate toat’ (=t, ort;)!

" JEE
Proving Type Safety

Progress Theorem: If t is well-typed, then it is either a value or there
exists at' such thatt > t.

Observations: (1) if t: Bool is a value, thent = true ort= false
(2) ift: Natis a value, thent= succ(... succ (zero)...)
e — |

Proof. Induction on t. 20

t = true|false|zero - immediate.

t = ift thent,elset;: R, then t;:Bool, t,:R,andt;; R (INV.L)
* tyis value. By (1),t = true ort=false.

Thus, t can evaluate toat’ (=t, or t;)!

» t,is NOT value. By induction 3t with t; > t,’.
Thus, tcan evaluatetoat (=1ift,’ then.)!

" JEE
Proving Type Safety

Progress Theorem: If t is well-typed, then it is either a value or there
exists a t' such thatt > t.

Observations: (1) ift: Bool is a value, then t = true ort = false

(2) ift: Natis a value, thent= succ(... succ (zero)...)
-
Proof. Inductionont. >0

t = true|false|zero - immediate.

t

succt,. By induction, t; is value ort; > t;". By INV.L, t;: Nat.

* t,is value. By (2), t; = succ(.. zero ..). Hence, tis also a value!

« t,is NOT value. Then t can evaluate to a t’ (= succ t)

" JEE
Proving Type Safety

Progress Theorem: If t is well-typed, then it is either a value or there
exists a t' such thatt > t.

Observations: (1) ift: Bool is a value, thent = true ort = false

(2) ift: Natis a value, thent= succ(... succ (zero)...)
[
Proof. Induction ont. >0

t = true|false|zero - immediate.

t = predt,. Byinduction,t,isvalueort, >t,’. ByINV.L,t, :Nat.

* t, is value. By (2), t; = succ(.. zero ..). Thus, t can evaluate!

+ t,is NOT value. Then t can evaluate to a t' (= pred t;’)

" JEE
Proving Type Safety

Progress Theorem: If t is well-typed, then it is either a value or there
exists at' such thatt > t.

Observations: (1) if t: Bool is a value, thent = true ort= false
(2) ift: Natis a value, thent= succ(... succ (zero)...)

Proof. Induction on t. 20

t = true|false|zero - immediate.
t = iszerot,. Byinduction, t,is value ort, > t,’. By INV.L,,t,: Nat.
« t,is value. By (2), t; = succ(.. zero ..). Thus, t can evaluate!

« t,is NOT value. Then t can evaluate to a t' (= iszero t,")

" JEE
Proving Type Safety

Preservation Theorem: If t: T and t>t, then t':T.

t = ift thent,elset;: R, then t;:Bool, t,: R, andt;; R (INV.L)

t=1t, |ty | ift thent,elset;, wheret, >t/

" JEE
Proving Type Safety

Preservation Theorem: If t: T and t>t, then t':T.

t = ift, thent,elset;: R, then t,:Bool, t,:R,andtz R (INV.L.)

t=1t, |ty | ift thent,elset;, wheret, >t/

‘R :R
By induction, t," : Bool. THUS, t' : R.

" JEE
Proving Type Safety

Preservation Theorem: If t: T and t>t, then t' : T.

t = ift, thent,elset;: R, then t,:Bool, t,:R,andt;z R (INV.L)

t=1t, |ty | ift thent,elset;, wheret, >t/

‘R :R
By induction, t,” : Bool. THUS, t' : R.

t = succt,. Thus, succt, > succt/andt, >1t’. ByINV.L,t, :Nat

" JEE
Proving Type Safety
Preservation Theorem: If t: T and t>t, then t':T.
t = ift thent,elset;: R, then t;:Bool, t,: R,andt;; R (INV.L.)
t=1t, |ty | ift’ thent,elset; wheret, >t/

‘R R
By induction, t,;” : Bool. THUS, t': R.

—_
1}

By induction, t," : Nat. THUS, also succt, : Nat.

succt,. Thus, succt, > succt/andt, >t/ . ByINV.L,t, :Nat

" JEE
Proving Type Safety

Preservation Theorem: If t: T and t>t, then t':T.

t = ift thent,elset;: R, then t;:Bool, t,: R, andt;; R (INV.L)

t=1t, |ty | ift thent,elset;, wheret, >t/
‘R :R
By induction, t;” : Bool. THUS, t' : R.

t = succt,. Thus,succt, > succtandt; >t/ ByINV.L,t :Nat

By induction, t;" : Nat. THUS, also succ t;": Nat.

Cases t = predt, | iszerot,

Try yourself!!

" JEE
Simply Typed Lambda Calculus

Imagine the small language A-Bool, consisting of lambda terms together
with Boolean primitives.

- How to define a Type System that is safe (= “well-typed programs
do not go wrong”)

i.e., we need typing rules for variables, abstraction, application,
in such a way that we can prove Progress and Preservation.

" JEE
Simply Typed Lambda Calculus

The set of simple types over Bool is the smallest set T such that

1. Boole T

2. if R,R,E€T, then R, >R, €T

- binds to the right. Thus, R; > R, > Ry means R, 2 (R, 2 R;).

... and in such a way that the “slack” is small! ...

BUT, lambda calculus is Turing complete > nontrivial properties canNOT
be decided!!! (Rice’s Theorem)

if <long and tricky computation> then true else (Ax. x)

How to type Ax.t ?
= what happens when t is applied to an argument?

But, what type of arguments to expect??

annotate arguments explicitly. Ax:T,;.t explicitly typed langs.

deduce argument type from the body t of the abstraction

implicitly typed langs.

" JEE
Simply Typed Lambda Calculus

We do explicitly typed langs! Syntax change: Ax:T;.t

determines a type environment for t

Type Environment I ={(xy, Ty), ..., (X,, T,) } (finite function var>Types)

" JEE
Simply Typed Lambda Calculus

We do explicitly typed langs! Syntax change: Ax:T,;.t

determines a type environment for t

Type Environment I ={(x;, Ty), ..., (X,, T,)} (finite function var>Types)

A+ B =under the

typing rule for lambda abstraction: assumption A, B holds

Mx:Ty F T,
FEAX:T. T T2T,

A+ B =under the

typing rule for lambda abstraction: assumption A, B holds

“making the assumption x:T; explicit”

Note: renaming of x in t is needed if x appears in I'!

" JEE
Simply Typed Lambda Calculus
Mx:T; B t:T,

R lambda abstraction
FEAX:T. T T2T,

MFt:T>R MEt,:T
1 2 function application

N-t; t,:R
x:Tel X
—_— variable
MEx:T

" JEE
Simply Typed Lambda Calculus
Mx:T, F T,

R lambda abstraction
FEAX:T. T T2T,

[o i g MHt,:T
MEt; t,:R

function application

X:Tel

—_— variable
MEx:T

a derivation tree:

F (Ax:Bool. x) true : Bool

a derivation tree:

F Ax:Bool. x : Bool->Bool I true:Bool
F (Ax:Bool. x) true : Bool

application

" JEE
Simply Typed Lambda Calculus
LXtTi B BT ambda abstraction
FEAX:T,. Tt T2T,
M-1t;:T>R MEt,:T

function application
NEt; t,:R

xX:Tel

_ variable
MEx:T

" JEE
Simply Typed Lambda Calculus
MXx:T, F T,

- < lambda abstraction
FTEAX:T,. T T 2T,

MFt;:T>R MEt,:T

function application
MFt; t,:R

X:Tel

_ variable
MEx:T

a derivation tree:

. X : Bool F x : Bool
abstraction

F Ax:Bool. x : Bool->Bool F true:Bool

application
F (Ax:Bool. x) true : Bool

a derivation tree:
x : Bool € x : Bool

. x : Bool - x : Bool
abstraction

F Ax:Bool. x : Bool->Bool F true:Bool

application
F (Ax:Bool. x) true : Bool

" JEE
Proving Type Safety

Theorem: Every term has at most one type (with unique derivation).
1. If T +x:R, then xReTl.

INV. L.

3.IfF M-t t,:R, then3T st Nt T>R and MHt,:T.

Observation (3) Ifvis avalue oftype T, > T,, then v= Ax:T,.t,.

2. If TEAxT,.t:R, thenR=T, 2> R, for some R, with ', x:T, - t:R,.

" JEE
Proving Type Safety

Theorem: Every term has at most one type (with unique derivation).

1. f T'Ex:R, then xReT.
2. If T AxT,.t:R, thenR=T, > R, for some R, with ',x:T, - t:R,.
3.If M-t t,:R, then3T st Mt T>R and Ikt,:T.

INV. L.

Observation (3) Ifvis avalue oftype T, > T,, then v= Ax: T;.t,.

Progress Theorem: If t is closed and well-typed, then it is either a value
or there exists a t” such that t > t’.

Proof. t = true|false|if.. like before!
t = ATy t; isavalue!

Progress Theorem: If t is closed and well-typed, then it is either a value
or there exists a t’ suchthat t > t’.

Proof. t = true|false|if.. like before!
= AxT,. t; isavalue!
t =1t t,:Rthen3T st Ft;:T>R and F t,:T.
by induction for t; and t,: either a value or can take a step.
If t,2t, then t>t’ (=t't,)

t

If both are values, then t; is
If t, value and t,>t," then t>t’ (=t,1,) abstraction, so can be applied!

" JEE
Proving Type Safety
Preservation of substitution:

If (1) r Fs:S .

@) xSk t:T then I F[x>s]t:T
Proof.

induction on structure of t. 6 cases

1. t=2z. Ifz=x then ', xS+ x: T implies that T=S.
AndlFs:S meansthat TF[x>s]x:T

If z£x then I', x:Stz: Timpliesthat zT €.
Thus NFz:T.

" JEE
Proving Type Safety
Preservation of substitution:

If (1)r Fs:S

@ T, xSFt:T then I F[x>s]t:T

Proof.
induction on structure of t. 6 cases
2. t=Ay:T, t,. ByINVL. T=T,> T, and I, y:T,Ht,: T,
Since xOdom(") and x2y, weaken / to I, y:T,, x:Skt,: T,
=
andweaken Fs:S to ['Fs:S

" JEE
Proving Type Safety
Preservation of substitution:

F ()T Fs:S

@) T, xSk t:T then F[x>s]t:T

Proof.
induction on structure of t. 6 cases
2. t=Ay:Tot. By INVL. T=T,> T, and I, y:T,Ht,: T,
Since xOdom([") and x#y, weaken /ﬁy:Tz, xSkt :T,

=
andweaken [Fs:S to ['Fs:S

By induction, Mk[x->s]t,:T,.
FEAY T, [xX2>s]t : T, >T,.

abstraction

" JE
Proving Type Safety
Preservation of substitution:

f (1)r Fs:S

@) T, xSk t:T then I F[x>s]t:T

Proof.
induction on structure of t. 6 cases
2. t=Ay:Toty. ByINVL. T=T, > T, and I, y:T,Ht: T,
Since xOdom([") and x2y, weaken mty:Tz, xSkt T,
=
andweaken Fs:S to ['Fs:S

By induction, Mk[x->s]t:T,.
FEAY T, [x2> s8]t : T, >T,.

abstraction

=T F[x=>s]t:T

" JEE
Proving Type Safety
Preservation of substitution:

If ((;;I[xSI':i'IS' then I F[x>s]t:T

Proof.
induction on structure of t. 6 cases
3. t=t;t,. ByINV.L. I',x:SFt:Timplies
MxSk4:T,> T,
M xSkt:T, with T =T,

By induction (2x): ; :: K:)) 2}:1 $z >T
2 12

application
FE[x>slt [x>s]t,: T,

=T F[x>s]t:T

" JEE
Proving Type Safety
Preservation of substitution:

I ((;))[E xSI':st‘? then I F[x>s]t:T

Proof.
induction on structure of t. 6 cases

4.t=true. ByINV.L, T =Bool.
[x>s]t=true, and [I true : Bool (V)

5. t=false. Same thing.

6. t=1ft, thent,elset,.

I, xS+t :Bool I, xSk [x->s]t :Bool
by INV.L. T, x:Skt,: T induct. T,xSF[x>slt,:T
MxSkt:T MxSkH[x>s]ty: T

FE[x>slift thent,elsety: T

" JEE
Proving Type Safety
Preservation. If THt:T and t>t, then IFt:T.
Proof. Induction on the structure of t.

t = z|Ay:Ty. t;| true| false nothing to be done (At)
t

ift, thent,elset; exactly like before!

-
I

=t t. ByINV.L. I'Ft:Timpliesthat T=T,, 'Ft;:T,> T,
and [Ft,:T,

(1) t, >t Byinduction It T,> T,

" JE
Proving Type Safety
Preservation. If T+t: T and t>t, then NFt:T.
Proof. Induction on the structure of t.

t = z|Ay:T,. t,| true | false nothing to be done (A t)
t

ift thent,elset; exactly like before!

—_
I

= t; t,. By INV.L. ['+t:TimpliesthatT=T,, IFt:T,> T,
and [Ft,:T,

(1) t,>t,. Byinduction I FtT,> T,
FFt 4T,

" JEE
Proving Type Safety
Preservation. If THt:T and t>t, then [Ft:T.
Proof. Induction on the structure of t.
t = z|A\y:T,. t;| true| false nothing to be done (At)

t = ift, thent,elset; exactly like before!

t =t t,. ByINV.L. THt:TimpliesthatT=T,, I'Ft:T,> T,
and Ht,:T,
(1) t; > t/. Byinduction [+t,: T, > T,
Mt t T,
T

(2) t,value, t, > t,. Sameas (1)!

" JE
Proving Type Safety
Preservation. If +t:T and t>1t, then [Ft:T.
Proof. Induction on the structure of t.

t

z|Ay:T,. t; | true| false nothing to be done (A1)

t = ift, thent,elset, exactly like before!

t =t t,. ByINV.L. I'+t:TimpliesthatT=T,, +t;:T,> T,
and THt:T,

(3) t;, t, values. Then t; = Ax:T,. ty,. By INV.L. T, xiT,Ft,: Ty
t > t=[x>t]1t,

" JEE
Proving Type Safety
Preservation. If THt:T and t>t, then IFt:T.
Proof. Induction on the structure of t.

t = z|Ay:Ty. t;| true| false nothing to be done (At)
t

ift, thent,elset; exactly like before!

-
I

=t t,. ByINV.L. I'Ft:Timplies that T=T,,
and

[HEt: T, 2T,

FoxTEt,: T,y

Preserv. of subst.

(3) ty, t, values. Then t; = Ax:T,. t;,. By INV.L.
t>t=[x>41t,

FE[x>t,]1t: T,

" JEE
Conclusions

TODAY: implement simply typed lambda caculus with Tet/f1ix
and types Bool and Nat.

To avoid repetitions and to increase readabiliby:
give names to subexpressions!

Tet x=t, in t,
similarto Ax:T,. t)t; > [x >t]t
but this needs type T, explicitely!
MEt T, MxTiE,:T,

I+ Tet x=t; int,: T,

(1) 4>t

luati H
evaluation €asy: o) t, value: [x >t]t

" JEE
Conclusions

TODAY: implement simply typed lambda caculus with Tet/f1x
and types Bool and Nat.

Conclusions

TODAY: implement simply typed lambda caculus with Tet/letrec
and types Bool and Nat.

To be able to type recursive functions: add fix to the language.

Note fix := Af. (Ax. f (A\y. x x y)) (Ax. f (Ay. x x y)) canNOT be

fix (Afact. factdef) 3 ->* 6

FrEt:T,>T,
M+ fixt:T,
‘unroll’/expand once

’ (1) 4>t
evaluation (2) t, =AxT, i t, then [x > Fix (AT,)1t

typed in the simply typed lambda calculus. Can you find out WHY??

To be able to type recursive functions: add Tetrec to the language.
Tetrecx:T;=t;int, = Tetx=Fix(Ax:T;.ty) in t,

(fix: only internally, for typing!)

let rec fact:Num->Num = Iafnguage
\x:Num. if (iszero x) then (succ zero) else .. | °
today

evaluation M 4y>t . unroll’/expand once
(2) t, =MxT, 0ty then [x > Fix AxT. t)1t,

