

- 4. Proving Type Safety
- 5. Conclusions

A Type System for Arithmetic Expressions Expr ::= true | false | zero

 Expr
 ::=
 if Expr then Expr else Expr

 Expr
 ::=
 succ (Expr)

 Expr
 ::=
 pred (Expr)

 V
 Expr
 ::=

 isZero (Expr)
 N

"Stuck" terms:

Val ::= true | false | NVal NVal ::= zero | succ NVal

succ(true) isZero(false) if zero then true else false

Cannot rewrite, but are not values. \rightarrow no semantics = execution error

type sound = all well-typed programs are free of execution errors

→ find a Type System for Expr, so that well-typed terms do NOT get stuck!

A Type System for Arithmetic Expressions			
→ find a Type System for Expr, so that well-typed terms do NOT get stuck!			
The converse will NOT be true: if true then zero else false is not stuck (evaluates to zero), but will not be well-typed!			
non-stuck (= free of execution errors)			
well-typed			
"slack" → keep the slack small!			
Introduce two types Bool and Nat, representing Booleans and Numbers.			
Every Exprit will be of type Bool of Nat, or will have no type.			
t : Bool = "t has type Bool"			
typing rules (Type System): true : Bool false : Bool			
t ₁ : Bool t ₂ : T t ₃ : T			
if t_1 then t_2 else t_3 : T			

typing rules:	true : Bool zero : Nat	false:Bool	$\frac{t_1: \text{Bool}}{\text{if } t_1 \text{ then } t_2 \text{ clse } t_3 \text{ ; } T}$
	$\frac{t_1 : Nat}{succ t_1 : Nat}$	$\frac{t_1 : Nat}{pred t_1 : Nat}$	t ₁ : Nat i szero t ₁ : Bool
Note: th	is type system is	VERY simple.	x definition (EBNE)

А Туре	e System fo	or Arithmetic	c Expressions
typing rules:	true : Bool zero : Nat	false:Bool	$\begin{array}{c} t_1: \textbf{Bool} t_2: T t_3: T\\ \textbf{if} t_1 \textbf{ then } t_2 \textbf{ else } t_3: T \end{array}$
	$\frac{t_1 : Nat}{succ t_1 : Nat}$	$\frac{t_1 : Nat}{pred t_1 : Nat}$	$\frac{t_1 : Nat}{i sZero t_1 : Bool}$
typing deriva	tion for if isz	ero zero then	zero else pred zero
2	zero : Nat		zero:Nat
isze	ro zero:Bool	zero : Nat	pred zero: Nat
ifi	sZero zero t	nen zero else	pred zero : Nat

A Type System for Arithmetic Expressions

How to find a typing derivation?

 \rightarrow assume the Expr has some type R; then deterimine backwards the required types of the subexpressions, and check them!

- 1. If true: R or false: R, then R = Bool.
- 2. If zero : R, then R = Nat.
- 3. If $if t_1 then t_2 else t_3 : R$, then $t_1 : Bool, t_2 : R$, and $t_3 : R$
- 4. If succ $t_1 : R$ or pred $t_1 : R$, then R = Nat
- 5. If $isZero t_1 : R$, then R = Bool and $t_1 : Nat$

A Type System for Arithmetic Expressions How to find a typing derivation? → assume the Expr has some type R; then deterimine backwards the required types of the subexpressions, and check them! 1. If true : R or false : R, then R = Bool. 2. If zero : R, then R = Nat. 3. If if t₁ then t₂ else t₃ : R, then t₁ : Bool, t₂ : R, and t₃ : R 4. If succ t₁ : R or pred t₁ : R, then R = Nat 5. If iszero t₁ : R, then R = Bool and t₁ : Nat Theorem: Every term has at most one type (with unique derivation). Proof by induction, using INV.L.

 how to define a type system T (to allow for unambiguous implementations)

how to formally prove that (P, T) is type sound
 = type safe

• how to implement a typechecker for T

Proving Type Safety

Preservation Theorem: If t:T and $t \rightarrow t'$, then t':T.

```
t = if t_1 then t_2 else t_3 : R, then t_1 : Bool, t_2 : R, and t_3 : R (INV.L.)
```

```
 \begin{array}{l} t' = t_2 \mid t_3 \mid ift_1' then t_2 else t_3, \ where t_1 \rightarrow t_1' \\ : R : R \\ By \ induction, t_1' : Bool. \ THUS, t' : R. \end{array}
```

Proving Type Safety

Preservation Theorem: If t:T and $t \rightarrow t'$, then t':T.

```
t = if t_1 then t_2 else t_3 : R, then t_1 : Bool, t_2 : R, and t_3 : R (INV.L.)
```

```
\begin{array}{l} t' = t_2 \mid t_3 \mid \text{if } t_1' \text{ then } t_2 \text{ else } t_3, \text{ where } t_1 \rightarrow t_1' \\ \vdots \text{ R} \quad : \text{R} \\ \text{By induction, } t_1' : \text{Bool. THUS, } t' : \text{R.} \end{array}
```

 $t = succ t_1$. Thus, $succ t_1 \rightarrow succ t_1$ ' and $t_1 \rightarrow t_1$ '. By INV.L., t_1 : Nat.

Preservation Theorem: If t:T and $t \rightarrow t'$, then t':T.

```
\begin{split} t &= \mathbf{if} \, t_1 \, \mathbf{then} \, t_2 \, \mathbf{else} \, t_3 : \mathsf{R}, \ \ \mathbf{then} \ \ t_1 : \mathsf{Bool}, \ \ t_2 : \mathsf{R}, \ \mathbf{and} \ \ t_3 : \mathsf{R} \quad (\mathsf{INV.L.}) \\ t' &= t_2 \ | \ t_3 \ | \ \ \mathbf{if} \ \ t_1' \ \ \mathbf{then} \ \ t_2 \, \mathbf{else} \, t_3, \ \ \mathbf{where} \ \ t_1 \rightarrow t_1' \\ &: \mathsf{R} \quad : \mathsf{R} \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\
```

$$\begin{split} t \ = \ & \text{succ} \ t_1. \ \ \text{Thus, succ} \ t_1 \ \Rightarrow \ \text{succ} \ t_1' \ \text{and} \ t_1 \ \Rightarrow \ t_1'. \ \ By \ INV.L., \ t_1: \text{Nat.} \\ & \text{By induction, } \ t_1': \text{Nat.} \ \ \text{THUS, also} \ \ \text{succ} \ \ t_1': \text{Nat.} \end{split}$$

Simply Typed Lambda Calculus

Imagine the small language $\lambda\text{-}\mathsf{Bool},$ consisting of lambda terms together with Boolean primitives.

→ How to define a Type System that is safe (= "well-typed programs do not go wrong")

i.e., we need typing rules for variables, abstraction, application, in such a way that we can prove Progress and Preservation.

 \ldots and in such a way that the "slack" is small! \ldots

BUT, lambda calculus is Turing complete → nontrivial properties canNOT be decided!!! (Rice's Theorem)

if <long and tricky computation> then true else ($\lambda x.\ x)$

e (with unique derivation).
$_{2}$ for some R ₂ with Γ ,x:T ₁ ⊢ t:R ₂ . - t ₁ : T→R and Γ ⊢ t ₂ : T.
\rightarrow T ₂ , then v = λx : T ₁ .t ₂ .
ell-typed, then it is either a value uch that $t \rightarrow t'$.
efore!
$_1:T \rightarrow R$ and $\vdash t_2:T$.
a value or can take a step.
If both are values, then t_1 is abstraction, so can be applied!

Conclusion	IS
TODAY: implem	ent simply typed lambda caculus with let/fix and types Bool and Nat.
To avoid repetition	ons and to increase readabiliby: give names to subexpressions!
	let $x=t_1$ in t_2
similar to $(\lambda x:T_1, \lambda x:T_1, \lambda x)$	t_2) $t_1 \rightarrow [x \rightarrow t_1] t_2$ but this needs type T_1 explicitely!
ГН	$\mathbf{t}_1 : \mathbf{T}_1 \qquad \mathbf{\Gamma}, \mathbf{x} : \mathbf{T}_1 \vdash \mathbf{t}_2 : \mathbf{T}_2$
	$\Gamma \vdash let x=t_1 in t_2 : T_2$
evaluation easy:	(1) $t_1 \rightarrow t_1'$ (2) t_1 value: $[x \rightarrow t_1] t_2$

