Type Systems

Lecture 3 Nov. 3rd, 2004
Sebastian Maneth

http://lampwww.epfl.ch/teaching/typeSystems/2004



"
Today: ... into the types ...

1. A Type System for Arithmetic Expressions
2. Proving Type Safety

3. Simply Typed Lambda Calculus

4. Proving Type Safety

5. Conclusions



"
A Type System for Arithmetic Expressions

Expr ::= true | false | zero

Expr ::= if Expr then Expr else Expr

Expr ::= succ (Expr)

Expr ::= pred (Expr) Val ::= true | false | NVal
Expr ::= isZero (Expr) NVal ::= zero | succ NVal

“Stuck” terms:  succ(true)
isZzero(false)
1t zero then true else false

Cannot rewrite, but are not values. = no semantics = execution error

type sound = all well-typed programs are free of execution errors

- find a Type System for Expr, so that well-typed terms do NOT get stuck!



"
A Type System for Arithmetic Expressions

- find a Type System for Expr, so that well-typed terms do NOT get stuck!

The converse will NOT be true: if true then zero else succ(true)
is not stuck (evaluates to zero), but will not be well-typed!

non-stuck (= free of execution errors)

/
well-typed
| “slack” - keep the slack small!

Introduce two types Bool and Nat, representing Booleans and Numbers.
Every Expr t will be of type Bool or Nat, or will have no type.

t:Bool = “thastype Bool”



"
A Type System for Arithmetic Expressions

- find a Type System for Expr, so that well-typed terms do NOT get stuck!

The converse will NOT be true: 1f true then zero else false
is not stuck (evaluates to zero), but will not be well-typed!

non-stuck (= free of execution errors)
well-typed

@/
| “slack” - keep the slack small!

Introduce two types Bool and Nat, representing Booleans and Numbers.
Every Expr t will be of type Bool or Nat, or will have no type.

t:Bool = “thastype Bool”

typing rules (Type System): true : Bool false : Bool
t,:Bool t,:T t3:T
ift, thent,elset;: T




"
A Type System for Arithmetic Expressions

typing rules:  true : Bool false : Bool t,:Bool t,:T t3:T
~ero - Nat ift, thent,elset,: T
t, : Nat t, : Nat t, : Nat
succ t, : Nat predt, : Nat 1sZero t, : Bool

Note: this type system is VERY simple.
—> it can be incorporated into the syntax definition (EBNF).

do you see how?



" JEE
A Type System for Arithmetic Expressions

typing rules:  true : Bool false : Bool t,:Bool t,:T t3:T
~ero - Nat ift, thent,elset,: T
t, : Nat t, : Nat t, : Nat
succ t, : Nat predt, : Nat 1sZero t, : Bool

typing derivation for it isZero zero then zero else pred zero

zero : Nat zero : Nat
isZero zero : Bool zero : Nat pred zero : Nat

1f 1sZero zero then zero else pred zero: Nat



"
A Type System for Arithmetic Expressions

How to find a typing derivation?

- assume the Expr has some type R; then determine backwards
the required types of the subexpressions, and check them!

1.If true:R or false: R, then R = Bool.
2.1f zero: R, then R = Nat.



"
A Type System for Arithmetic Expressions

How to find a typing derivation?

- assume the Expr has some type R; then deterimine backwards
the required types of the subexpressions, and check them!

1.If true:R or false: R, then R = Bool.
2.1f zero: R, then R = Nat.
3.1f ift, thent,elset;: R, then t,:Bool, t,:R,andt;: R

4. If succt,:R or predt,: R, then R = Nat
5.1f1szerot,: R, then R=Boolandt, : Nat



"
A Type System for Arithmetic Expressions

How to find a typing derivation?

- assume the Expr has some type R; then deterimine backwards
the required types of the subexpressions, and check them!

1.If true:R or false: R, then R = Bool.
2.1f zero: R, then R = Nat.
3.1f ift, thent,elset;: R, then t,:Bool, t,:R,andt;: R

4. lfsucct,:R or predt, :R, then R = Nat \ /

I
5.fiszerot, : R, then R=Boolandt, : Nat Mustbethe sameRI



"
A Type System for Arithmetic Expressions

How to find a typing derivation?

- assume the Expr has some type R; then deterimine backwards
the required types of the subexpressions, and check them!

1.If true:R or false: R, then R = Bool.
2.1f zero: R, then R = Nat.
3.1f ift, thent,elset;: R, then t,:Bool, t,:R,andt;: R

4. lfsucct,:R or predt, :R, then R = Nat \ /

I
5.fiszerot, : R, then R=Boolandt, : Nat Mustbethe sameRI

INVERSION LEMMA

Theorem: Every term has at most one type (with unique derivation).

Proof by induction, using INV.L.



" A
What you will learn in this course:

- how to define a type system T (to allow for
unambiguous implementations)

* how to formally prove that (P, T) is type sound

* how to implement a typechecker for T



" A
What you will learn in this course:

- how to define a type system T (to allow for
unambiguous implementations)

* how to formally prove that (P, T) is type sound
= type safe

* how to implement a typechecker for T



"
Proving Type Safety

“‘well-typed terms do not go wrong”
Safety = Progress + Preservation

Progress = A well-typed term is NOT stuck
Preservation = evaluation preserves well-typedness

well-typed = NOT stuck -> either value or
Progress we can evaluate - result is well-typed
Preserve



"
Proving Type Safety

“‘well-typed terms do not go wrong”
Safety = Progress + Preservation

Progress = A well-typed term is NOT stuck
Preservation = evaluation preserves well-typedness

well-typed = NOT stuck -> either value or
Progress we can evaluate - result is well-typed
Preserve |




"
Proving Type Safety

Progress Theorem: If t is well-typed, then it is either a value or there

Observations: (1) if t : Bool is a value, thent = true ort=false

Proof.

t
t

exists at such thatt - t.

(2) ift: Natis avalue, thent= succ(... succ (zero)...)

>0

Induction on t.

true | false|zero - immediate.

ift thent,elset;: R, then t;:Bool, t,:R,and t;: R

(INV.L.)



"
Proving Type Safety

Progress Theorem: If t is well-typed, then it is either a value or there
exists at such thatt 2> t.

Observations: (1) ift: Bool is a value, thent = true ort= false
(2) ift: Natis avalue, thent= succ(... succ (zero)...)

>0

Proof. Induction ont.
t = true| false|zero - immediate.
t = ift, thent,elset;: R, then t,:Bool, t,: R,andt;: R (INV.L.)

 t,isvalue. By (1),t=trueort= false.

Thus, tcan evaluatetoat’ (=t, ort;)!



"
Proving Type Safety

Progress Theorem: If t is well-typed, then it is either a value or there
exists at such thatt 2> t.

Observations: (1) ift: Bool is a value, thent = true ort= false
(2) ift: Natis avalue, thent= succ(... succ (zero)...)

>0

Proof. Induction ont.
t = true| false|zero - immediate.
t = ift, thent,elset;: R, then t,:Bool, t,: R,andt;: R (INV.L.)

 t,isvalue. By (1),t=trueort= false.

Thus, tcan evaluatetoat’ (=t, ort;)!

 t,is NOT value. By induction 3t," with t; = t,.
Thus, t can evaluatetoat (=1ift,’ then..)



"
Proving Type Safety

Progress Theorem: If t is well-typed, then it is either a value or there

exists at such thatt - t.

Observations: (1) ift: Bool is a value, thent = true ort= false

Proof.

t
t

(2) ift: Natis avalue, thent= succ(... succ (zero)...)

>0

Induction on t.

true | false|zero - immediate.

succt,. By induction, t,isvalueort, 2> t,". By INV.L,t,: Nat.

* t, is value. By (2), t, = succ(.. zero ..). Hence, tis also a value!

* t,is NOT value. Then t can evaluate toat’ (= succt,’)



"
Proving Type Safety

Progress Theorem: If t is well-typed, then it is either a value or there

exists at such thatt - t.

Observations: (1) ift: Bool is a value, thent = true ort= false

Proof.

t
t

(2) ift: Natis avalue, thent= succ(... succ (zero)...)

>0

Induction on t.

true | false|zero - immediate.

predt,. By induction,t,isvalue ort, > t,’. By INV.L,t, : Nat.

* t, is value. By (2), t, = succ(.. zero ..). Thus, t can evaluate!

« t, is NOT value. Then t can evaluate to a t’ (= pred t,’)



"
Proving Type Safety

Progress Theorem: If t is well-typed, then it is either a value or there

exists at such thatt - t.

Observations: (1) ift: Bool is a value, thent = true ort= false

Proof.

t
t

(2) ift: Natis avalue, thent= succ(... succ (zero)...)

>0

Induction on t.

true | false|zero - immediate.

1sZerot,. By induction, t, is value ort, > t,”. By INV.L., t,: Nat.

* t, is value. By (2), t, = succ(.. zero ..). Thus, t can evaluate!

 t,is NOT value. Then t can evaluatetoat (= 1sZerot,’)



" JEE—
Proving Type Safety

Preservation Theorem: If t: T and t=>t, then t':T.

t = ift, thent,elset;: R, then t,;:Bool, t,: R,andt;; R (INV.L.)

t=1 | t; | 1Tt  thent,elset;, wheret, >t/



" JEE—
Proving Type Safety

Preservation Theorem: If t: T and t=>t, then t':T.

t = ift, thent,elset;: R, then t,;:Bool, t,: R,andt;; R (INV.L.)

t=1 | t; | 1Tt  thent,elset;, wheret, >t/
'R :R
By induction, t," : Bool. THUS, t': R.



" JE—
Proving Type Safety

Preservation Theorem: If t: T and t=>t, then t :T.

t = ift, thent,elset;: R, then t,;:Bool, t,: R,andt;; R (INV.L.)
t=1 | t; | 1Tt  thent,elset;, wheret, >t/

'R R
By induction, t," : Bool. THUS, t': R.

t = succt,. Thus, succt, > succt/andt, > t;/’. ByINV.L,t, :Nat.



" JEE—
Proving Type Safety

Preservation Theorem: If t: T and t=>t, then t :T.

t = ift, thent,elset;: R, then t,;:Bool, t,: R,andt;; R (INV.L.)

t=1 | t; | 1Tt  thent,elset;, wheret, >t/
'R R
By induction, t," : Bool. THUS, t': R.
t = succt,. Thus, succt, > succt/andt, > t;/’. ByINV.L,t, :Nat.

By induction, t;" : Nat. THUS, also succt,’ : Nat.



"
Proving Type Safety

Preservation Theorem: If t: T and t=>t, then t :T.

t = ift, thent,elset;: R, then t,;:Bool, t,: R,andt;; R (INV.L.)
t=1 | t; | 1Tt  thent,elset;, wheret, >t/

'R R
By induction, t," : Bool. THUS, t': R.

t = succt,. Thus, succt, > succt/andt, > t;/’. ByINV.L,t, :Nat.
By induction, t;" : Nat. THUS, also succt,’ : Nat.

Cases t = predt, | 1sZerot,

Try yourself!!



"
Simply Typed Lambda Calculus

Imagine the small language A-Bool, consisting of lambda terms together
with Boolean primitives.

- How to define a Type System that is safe (= “well-typed programs
do not go wrong”)

i.e., we need typing rules for variables, abstraction, application,
in such a way that we can prove Progress and Preservation.

... and in such a way that the “slack” is small! ...

BUT, lambda calculus is Turing complete - nontrivial properties canNOT
be decided!!! (Rice’'s Theorem)

1f <long and tricky computation> then true else (Ax. x)



"
Simply Typed Lambda Calculus

The set of simple types over Bool is the smallest set T such that
1. Boole T
2. if R,R,eT, then R,2>R, €T

- binds to the right. Thus, R, 2 R, 2 Ry means R, 2 (R, 2 R;).

How to type AX.t ?
= what happens when t is applied to an argument?

But, what type of arguments to expect??

annotate arguments explicitly. Ax:T;.t  explicitly typed langs.

deduce argument type from the body t of the abstraction
implicitly typed langs.



"
Simply Typed Lambda Calculus

We do explicitly typed langs! Syntax change: Ax:T;.t

T

determines a type environment for t

Type Environment I ={ (x4, T¢), ..., (X, T,,) } (finite function var-> Types)

A + B = under the

typing rule for lambda abstraction:
yping ! assumption A, B holds

M, XiTy T,
FTEAXIT{.T I T2T,




"
Simply Typed Lambda Calculus

We do explicitly typed langs! Syntax change: Ax:T;.t

T

determines a type environment for t

Type Environment I ={ (x4, T¢), ..., (X, T,,) } (finite function var-> Types)

A + B = under the

typing rule for lambda abstraction:
yping ! assumption A, B holds

F,@I— t:T,
FI—@t : T2T,

“making the assumption x:T; explicit”

Note: renaming of x in t is needed if x appears in I'!



"
Simply Typed Lambda Calculus
[, X:T; F t:T,
FTEAX:IT{. € T2T,

lambda abstraction

FFt:T2R I P

function application

TFt; t, 1R
X:Tel _
variable
X T

a derivation tree:

- (Ax:Bool. x) true : Bool



"
Simply Typed Lambda Calculus
[, X:T; F t:T,
FTEAX:IT{. € T2T,

lambda abstraction

FFt:T2R I P

function application

TFt; t, 1R
X:Tel _
variable
X T

a derivation tree:

 Ax:Bool. x : Bool->Bool - true:Bool

- (Ax:Bool. x) true : Bool

application



"
Simply Typed Lambda Calculus
[, X:T; F t:T,
FTEAX:IT{. € T2T,

lambda abstraction

M+t :T>R Tt T . L
function application

TFt; t, 1R
X:Tel _
variable
X T

a derivation tree:

X : Bool - x : Bool
 Ax:Bool. x : Bool->Bool - true:Bool

- (Ax:Bool. x) true : Bool

abstraction

application



"
Simply Typed Lambda Calculus
[, X:T; F t:T,
FTEAX:IT{. € T2T,

lambda abstraction

M+t :T>R Tt T . L
function application

TFt; t, 1R
X:Tel _
variable
X T

a derivation tree:
X : Bool € x : Bool

X : Bool - x : Bool
 Ax:Bool. x : Bool->Bool - true:Bool

- (Ax:Bool. x) true : Bool

abstraction

application



" JJ
Proving Type Safety
Theorem: Every term has at most one type (with unique derivation).
4 1. f N''Ex:R, then x:ReTl.

;’ 2. If AT, t:R, thenR =T, 2 R, for some R, with ' x:T, - t:R,.

= 3 IfIFt, t,:R, thendT st Nt T>R and TFHt,:T.

Observation (3) If vis avalue of type T, > T,, then v= Ax:T;.t,.

Progress Theorem: If t is closed and well-typed, then it is either a value
or there existsa t’ suchthat t > t’.

Proof. t = true|false|if .. like before!
t

AX:T;. t; is a valuel



" A
Proving Type Safety
Theorem: Every term has at most one type (with unique derivation).
1. f T'Ex:R, then xxRe .
> 2. If T AT t:R, thenR=T, 2> R, for some R, with I x:T, - t:R,.

< 3. 1fr+t, t,:R, then3T st Nty TOR and ITkHt,:T.

Observation (3) If vis avalue of type T, > T,, then v= Ax:T;.t,.

Progress Theorem: If t is closed and well-typed, then it is either a value
or there existsa t’ suchthat t > t’.

Proof. t = true|false|if .. like before!
t = AXT;. t; isavaluel
t =1t t,:R,thendT st. Ft;:T2>R and F t,:T.
by induction for t, and t,: either a value or can take a step.

If t;2>1t;" then t=>t° (=t,'ty) If both are values, then t, is

If t,value and t,2>t,’ then t=>t’ (=t,t,) abstraction, so can be applied!



"
Proving Type Safety

Preservation of substitution:

f ()T  Fs:S

(2) T, xSk t:T then I FH[x—2>s]t:T

Proof.
induction on structure of t. 6 cases

1. t=2z. Ifz=x then ', xS+ x: T implies that T=S.
Andl"Fs:S meansthat N'F[x—>s]x:T

If z£x then [, x:S+z:Timpliesthat zT eI
Thus ['F2z:T.



"
Proving Type Safety

Preservation of substitution:

If (1) I Fs:S

2) T, xSk t:T then I FH[x=>s]t:T

Proof.
induction on structure of t. 6 cases

2. t=Ay:T,. t,. ByINV.L. T=T,> T, and ', y:T,Ft,:T,.

Since x[Odom(I") and x#y, weaken mjy:Tz, XSkt T,
ra
and weaken N+s:S tolFs:S




"
Proving Type Safety

Preservation of substitution:

If (1) I Fs:S

2) T, xSk t:T then I FH[x=>s]t:T

Proof.
induction on structure of t. 6 cases

2. t=Ay:T,. t,. ByINV.L. T=T,> T, and ', y:T,Ft,:T,.

Since x[Odom(I") and x#y, weaken m?y:Tz, XSkt T,
r7
and weaken N+s:S tolFs:S

By induction, ["F[x=>s]t :T,.

abstraction
FEAY T, [x=2s]t,: T, 2T,.



"
Proving Type Safety

Preservation of substitution:

If (1) I Fs:S

2) T, xSk t:T then I FH[x=>s]t:T

Proof.
induction on structure of t. 6 cases

2. t=Ay:T,. t,. ByINV.L. T=T,=> T, and I',y:T,Ft,:T,.

Since x[Odom(I") and x#y, weaken m?y:Tz, XSkt T,
r7
and weaken N+s:S tolFs:S

By induction, ["F[x=>s]t :T,.

abstraction
FEAY T, [x=2s]t,: T, 2T,.

= F[x=2s]t:T



"
Proving Type Safety

Preservation of substitution:

I ((;))ﬁ X'SII:StE'IS' then I F[x>s]t:T

Proof.
induction on structure of t. 6 cases

3. t=t, t,. ByINV.L. ', x:SFt:Timplies
XSkt :T,2> T,
XSkt T, with T =T,

FTE[x=>s]t:T,> T,

By induction (2x): FE[x>s]t:T
2 12

application
FTHE[x=2>slty [x=2>s]t,: T,

= [ F[x=2>s]t:T



"
Proving Type Safety

Preservation of substitution:

If (1) I Fs:S

2) T, xSk t:T then I FH[x=>s]t:T

Proof.
induction on structure of t. 6 cases

4.t=true. By INV.L., T=Bool.
[Xx 2 s]t=true, and [+ true : Bool (VI')

5. t= false. Same thing.
6. t=1ft, thent,elset,.

M, x:S 1t : Bool M, x:Sk[x=>s]t : Bool
by INV.L. T, x:SFt,: T  induct. I, xSF[x>s]t,:T
xSkt T MXSE[x2>st;: T

TE[x—>s]lift thent,elset;: T



"
Proving Type Safety

Preservation. If T+t: T and t=>t, then Ft:T.

Proof. Induction on the structure of t.

t
t

z|Ay:T,. t,| true| false nothingto

be done (A 1)

ift, thent,elset;  exactly like before!

t, t,, By INV.L. [+t:TimpliesthatT=T,, I+t :T,> T,

(1) t, 2> t,. Byinduction ' -t,: T, > T,

and [ Ft,:T,



" J
Proving Type Safety
Preservation. If 'Ht: T and t=>1t, then Ht:T.
Proof. Induction on the structure of t.
t = z|Ay:T,.t,| true| false nothing to be done (# t')

t = ift, thent,elset;  exactly like before!

t = t, t,. ByINV.L. T'+t:TimpliesthatT=T,, I'Ft:T,=> T,
and [ Ft,:T,

(1) t, > t/. Byinduction -t T, > T, v/
I ol VR P




"
Proving Type Safety

Preservation. If THt: T and t=>t,

Proof. Induction on the structure of t.

t
t

then T+Ht:T.

z | A\y:T,.t,| true | false nothing to be done (3 1)

ift, thent,elset;  exactly like before!

t, t,. By INV.L. I"F1t:Timplies that T=T,,

(1) t, > t,. Byinduction [ -t T,

and [ Ft,:T,

2> T,

/

(2) t,value, t, > t,. Same as (1)!

t’

T



"
Proving Type Safety

Preservation. If T+t: T and t=>t, then Ft:T.

Proof. Induction on the structure of t.

t
t

z | A\y:T,.t,| true | false nothing to be done (3 1)

ift, thent,elset;  exactly like before!

t, t,. By INV.L. I'=t:Timpliesthat T=T,, [ Ft:T,> T,
and [ Ft,:T,

(3) t,, t, values. Thent, = Ax:T,. t,,. By INV.L. ', xT,Ft,:T,
t > tt=[x=>t]t,



Proving Type Safety

Preservation.

If THt: T and t>t, then -t :T.

Proof. Induction on the structure of t.

t
t

z | A\y:T,.t,| true | false nothing to be done (3 1)

ift, thent, elset,

exactly like before!

t, t,. By INV.L. I'Ft:Timpliesthat T=T,, (Ft:T,> T,

and | [ Ft,: T,

(3) t,, t, values. Thent, = Ax:T,. t,. By INV.L\| I, xT, Ft,: T,

t > t=[x>t]t,

v

Preserv. of subst.

|

TEI[x=2>4L]t:T,



"
Conclusions

TODAY: implement simply typed lambda caculus with Tet/f1x
and types Bool and Nat.

To avoid repetitions and to increase readabiliby:
give names to subexpressions!

let x=t, 1n t,
similarto (Ax:T,.t,)t, =2 [x=2> 411
\but this needs type T, explicitely!
Tt T, XTI T,

T F let x=t; 1n t,: T,

(1) t, >t

luati :
evaluation easy (2) t,value: [x>t ]t



"
Conclusions

TODAY: implement simply typed lambda caculus with Tet/f1x
and types Bool and Nat.

To be able to type recursive functions: add fix to the language.

Note fix ;= Af. (AX. f (Ay. x xXy)) (AX. T (Ay. x X y)) canNOT be
typed in the simply typed lambda calculus. Can you find out WHY??

fix (Afact. factdef) 3 ->* 6

Tt T,2>T,
T fixt T,
M)t >t ‘unroll’/expand once
luati
evaluation (2) t =M:T,:t, then [x > fix (AxT,.1,)]t,



=
Conclusions

TODAY: implement simply typed lambda caculus with Tet/letrec
and types Bool and Nat.

To be able to type recursive functions: add letrec to the language.

letrec x:T;=t;int, = Tletx=Fix(Ax:T;.t;) in t,

(f1x: only internally, for typing!)

let rec fact:Num->Num = '3}”9“399
\X:Num. if (iszero x) then (succ zero) else .. ’?oday

t ‘unroll’/expand once

_ 1) t,
I t ( .
evaluation t =M:T,:t, then [x > fix (AxT,.1,)]t,

(2)



