

Today

1. What is the Lambda Calculus?
2. Its Syntax and Semantics
3. Church Booleans and Church Numerals
4. Lazy vs. Eager Evaluation (call-by-name vs. call-by-value)
5. Recursion
6. Nameless Implementation: deBruijn Indices

7. What is the Lambda Calculus
introduced in late 1930's by Alonzo Church and Stephen Kleene
can compute the same as Turing Machines, which is everything we can (intuitively) compute (Church-Turing Thesis).
is a formal system designed to investigate

- function definition
- function application
- recursion

1. What is the Lambda Calculus

what do we want?
\rightarrow a small core language, into which other language constructs can be translated.

There are many such languages:
Turing Machines
μ-Recursive Functions Chomsky's Type-0 Grammars Cellular Automata etc.
\rightarrow why do we pick out the Lambda Calulus?
because types are about values of program variables.

2. Syntax of the Lambda Calculus

Let V be a countable set of variable names.
The set of lambda terms (over V) is the smallest set T such that

1. if $x \in V$, then $x \in T$ variable
2. if $x \in V$ and $t_{1} \in T$, then $\lambda x . t_{1} \in T$ abstraction
3. if $t_{1}, t_{2} \in T$, then $t_{1} t_{2} \in T$ application

Function abstraction: instead of $f(x)=x+5$

a lambda term (i.e., $\in T$)
representing a nameless function, which adds 5 to its parameter

Conventions (to save parenthesis)
application is left associative: $x y z=(x y) z \quad \neq x(y z)$
scope of abstraction extends as far to the right as possible:

$$
\lambda x . x y=\lambda x \cdot(x y) \quad \neq(\lambda x \cdot x) y
$$

2. Semantics of the Lambda Calculus

Example:

$$
(\lambda x \cdot \lambda y \cdot f(y x)) 5(\lambda x \cdot x)
$$

2. Semantics of the Lambda Calculus

Example:

$$
\begin{aligned}
& (\lambda x \cdot \lambda y \cdot f(y x)) 5(\lambda x \cdot x) \\
= & ((\lambda x \cdot \lambda y \cdot f(y x)) 5)(\lambda x \cdot x) \quad \text { because App binds to the left! }
\end{aligned}
$$

2. Semantics of the Lambda Calculus

Example:
$(\lambda x . \lambda y . f(y x)) 5(\lambda x . x)$
$=((\lambda x \cdot \lambda y \cdot f(y x)) 5)(\lambda x \cdot x) \quad$ because App binds to the left! $\xrightarrow{\beta-\mathrm{red} .}$
$[x \rightarrow 5](\lambda y . f(y x))(\lambda x . x)$
$=(\lambda y . f(y 5))(\lambda x . x)$

2. Semantics of the Lambda Calculus
 Example:
 $(\lambda x . \lambda y . f(y x)) 5(\lambda x . x)$
 $=((\lambda x . \lambda y . f(y x)) 5)(\lambda x . x) \quad$ because App binds to the left!
 $\xrightarrow{\beta \text {-red. }}$
 $[x \rightarrow 5](\lambda y \cdot f(y x))(\lambda x . x)$
 $=(\lambda y \cdot f(y 5))(\lambda x . x)$
 $\xrightarrow{\beta \text {-red. }}$
 $[y \rightarrow \lambda x \cdot x](f(y 5))$
 $=f(\lambda \times \times 5)$

2. Semantics of the Lambda Calculus

Example:

$$
(\lambda x \cdot \lambda y . f(y x)) 5(\lambda x \cdot x)
$$

$=((\lambda x . \lambda y . f(y x)) 5)(\lambda x . x) \quad$ because App binds to the left! $\xrightarrow{\beta \text {-red. }}$
$[x \rightarrow 5](\lambda y \cdot f(y x))(\lambda x . x)$
$=(\lambda y . f(y 5))(\lambda x . x)$
β-red.
$[y \rightarrow \lambda x \cdot x](f(y 5))$
$=f(\lambda x . \times 5)$
$\xrightarrow{\beta \text {-red. }} \mathrm{f} 5$ (normal form $=$ cannot be reduced further)
2. Semantics of the Lambda Calculus

Example: Does every λ-term have a normal form?

$$
(\lambda x . x x)(\lambda x . x x)
$$

$\xrightarrow{\beta \text {-red. }}[x \rightarrow(\lambda x . x x)](x x)$
2. Semantics of the Lambda Calculus

Example: Does every λ-term have a normal form?

$$
\rightarrow \text { NO!!! }
$$

$(\lambda x . x x)(\lambda x . x x)$
$\xrightarrow{\beta \text {-red. }}[x \rightarrow(\lambda x . x x)](x x)$
$=(\lambda x . x \mathrm{x})(\lambda \mathrm{x} . \mathrm{x} \mathrm{x})$

2. Semantics of the Lambda Calculus

Example: Does every λ-term have a normal form?
\rightarrow NO!!!
$(\lambda x . x \times)(\lambda x . x x)$
$\xrightarrow{\beta \text {-red. }}[x \rightarrow(\lambda x . x x)](x x)$
$=(\lambda x . x x)(\lambda x . x x)$
$\xrightarrow{\beta \text {-red. }}$
$(\lambda x . x \mathrm{x})(\lambda \mathrm{x} . \mathrm{x} \mathrm{x})$
$\xrightarrow{\beta \text {-red. }}$
$(\lambda x . x x)(\lambda x . x x)$
\vdots

2. Semantics of the Lambda Calculus

Example: Does every λ-term have a normal form?
$\rightarrow \mathrm{NO}!!!$
$\underbrace{(\lambda x . x x)(\lambda x . x x)}_{=\text {: }}$ is called the omega combinator
=: omega
combinator $=$ closed lambda term
$=$ lambda term with no free variables

The simplest combinator, identity: id := $\lambda x . x$

2. Semantics of the Lambda Calculus

Free vs. Bound Variables:

$$
\lambda x . x y=\lambda x \cdot \underset{(x y)}{\text { bound }} \text { free }
$$

Define the set of free variables of a term $t, F V(t)$, as

$$
\begin{aligned}
& \text { if } \mathrm{t}=\mathrm{x} \in \mathrm{~V} \text {, then } \mathrm{FV}(\mathrm{t})=\{x\} \\
& \text { if } \mathrm{t}=\lambda \mathrm{x} . \mathrm{t}_{1} \text {, then } \mathrm{FV}(\mathrm{t})=\mathrm{FV}\left(\mathrm{t}_{1}\right) \backslash\{\mathrm{x}\} \\
& \text { if } \mathrm{t}=\mathrm{t}_{1} \mathrm{t}_{2} \text {, then } \mathrm{FV}(\mathrm{t})=\mathrm{FV}\left(\mathrm{t}_{1}\right) \cup F V\left(\mathrm{t}_{2}\right)
\end{aligned}
$$

3. Church Booleans and Numerals

How to encode BOOLEANS into the lambda calculus?

tru \rightarrow takes two arguments, selects the FIRST
f1s \rightarrow takes two arguments, selects the SECOND
THEN: if-then-else can be defined as:
test x u w = "apply x to u w"
$=(\underbrace{\lambda k \cdot \lambda m \cdot \lambda n \cdot k m n}_{=: \text {test }}) \times u \mathrm{w}$
$\operatorname{tru}:=\lambda m . \lambda n . m$
$\mathrm{fl} \mathrm{s}:=\lambda \mathrm{m} . \lambda \mathrm{n} . \mathrm{n}$
test tru u w $\xrightarrow{\beta \text {-red. }} \ldots \xrightarrow{\beta \text {-red. }} u$

3. Church Booleans and Numerals

How to encode BOOLEANS into the lambda calculus?
tru \rightarrow takes two arguments, selects the FIRST
$\mathrm{f} 1 \mathrm{~s} \rightarrow$ takes two arguments, selects the SECOND
tru := $\lambda \mathrm{m} . \lambda \mathrm{n} . \mathrm{m}$
$\mathrm{fls}:=\lambda \mathrm{m} . \lambda \mathrm{n} . \mathrm{n}$
test $:=\lambda k . \lambda m . \lambda n . \mathrm{kmn}$
How to do "and" on these BOOLEANS?

$$
\begin{aligned}
\text { and } u \mathrm{w} & =\text { "apply u to } w \mathrm{fls} \text { " } \\
& :=\underbrace{(\lambda m . \lambda n . \mathrm{mnfl} \mathrm{fl}}_{=: \text {and }}) \mathrm{u} w
\end{aligned}
$$

3. Church Booleans and Numerals

How to encode BOOLEANS into the lambda calculus?
tru \rightarrow takes two arguments, selects the FIRST
f1s \rightarrow takes two arguments, selects the SECOND
tru := $\lambda \mathrm{m} . \lambda \mathrm{n} . \mathrm{m}$
$\mathrm{fls}:=\lambda \mathrm{m} . \lambda \mathrm{n} . \mathrm{n}$
test $:=\lambda k . \lambda m . \lambda n . k m n$
How to do "and" on these BOOLEANS?

$$
\begin{aligned}
\text { and } u \mathrm{w} & =\text { "apply u to } \mathrm{w} \text { f1s" } \\
& :=\underbrace{(\lambda m . \lambda n . \mathrm{m} n \mathrm{fl} \mathrm{~s})}_{=: \text {and }} \mathrm{u} \mathrm{w}
\end{aligned}
$$

\rightarrow Define the or and not functions!

3. Church Booleans and Numerals

How to encode NUMBERS into the lambda calculus?

$$
\begin{aligned}
& \mathrm{c} 0:=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{z} \\
& \mathrm{c} 1:=\lambda \mathrm{s} . \lambda z . \mathrm{sz} \\
& \mathrm{c} 2:=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{sz}) \\
& \mathrm{c} 3:=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{~s}(\mathrm{~s} z)) \\
& \text { etc. }
\end{aligned}
$$

THEN, the successor function can be defined as

3. Church Booleans and Numerals

How to encode NUMBERS into the lambda calculus?

$$
\begin{aligned}
& \mathrm{c} 0:=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{z} \\
& \mathrm{c} 1:=\lambda \mathrm{s} \cdot \lambda \mathrm{z} . \mathrm{s} z \\
& \mathrm{c} 2:=\lambda \mathrm{s} \cdot \lambda \mathrm{z} . \mathrm{s}(\mathrm{~s} z) \\
& \mathrm{c} 3:=\lambda \mathrm{s} \cdot \lambda \mathrm{~s} . \mathrm{s}(\mathrm{~s}(\mathrm{~s} \mathrm{z}))
\end{aligned}
$$

How to do "plus" and "times" on these Church Numerals?
plus $:=\lambda m . \lambda n . \lambda s . \lambda z . m s(n s z)$
\uparrow
"apply m times the successor to n "

3. Church Booleans and Numerals

How to encode NUMBERS into the lambda calculus?
c0 := $\lambda \mathrm{s} . \lambda z . z$
$\mathrm{c} 1:=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{sz}$
$\mathrm{scc}:=\lambda \mathrm{n} . \lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{n} \mathrm{s} \mathrm{z})$
$\mathrm{c} 2:=\lambda \mathrm{s} . \lambda z . \mathrm{s}(\mathrm{sz})$
$\mathrm{c} 3:=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{s}(\mathrm{s} z))$
How to do "p7us" and "times" on these Church Numerals?
plus $:=\lambda m . \lambda n . \lambda s . \lambda z . m s(n s z)$
\uparrow
"apply m times the successor to n "
times $:=\lambda m . \lambda n . m$ (plus n) c0
\uparrow
"apply m times (pl us n) to c 0 "

3. Church Booleans and Numerals

How to encode NUMBERS into the lambda calculus?

```
c0 := \lambdas. \lambdaz.z scc := \lambdan. \lambdas. \lambdaz.s (n s z)
c1 := \lambdas. \lambdaz.s z
c2 := \lambdas. \lambdaz. s (s z)
c3 := \lambdas. \lambdaz.s (s (s z))
```


Questions:

1. Write a function subt for subtraction on Church Numerals.
2. How can other datatypes be encoded into the lambda calculus, like, e.g., lists, trees, arrays, and variant records?

3. Lazy vs. Eager Evaluation

What does this lambda term evaluate to??
tru id omega
$(\lambda m . \lambda n . m)(\lambda x . x)((\lambda x . x x)(\lambda x . x x))$
\rightarrow where to start evaluating? which redex??

4. Lazy vs. Eager Evaluation

A redex if outermost, if in the AST it has no ancestor that is a redex.

4. Lazy vs. Eager Evaluation

What does this lambda term evaluate to??
tru id omega
$(\lambda m . \lambda n . m)(\lambda x . x)((\lambda x . x x)(\lambda x . x x))$
\rightarrow where to start evaluating? which redex??

\rightarrow if we always reduce redex2
then this lambda term has NO semantics.
4. Lazy vs. Eager Evaluation

A redex if outermost, if in the AST it has no ancestor that is a redex.

A redex if leftmost, if in the AST it has no redex to the left of it.

4. Lazy vs. Eager Evaluation

A redex if outermost, if in the AST it has no ancestor that is a redex.

A redex if leftmost, if in the AST it has no redex to the left of it.

4. Lazy vs. Eager Evaluation

A redex if outermost, if in the AST it has no ancestor that is a redex.

A redex if leftmost, if in the AST it has no redex to the left of it.
4. Lazy vs. Eager Evaluation

Evaluation Strategies:

N	normal order call-by-name call-by-need	always reduce leftmost outermost redex first like normal order, but NOT inside abstractions like call-by-name but with sharing
¢	call-by-value	reduce only "value-redexes" (= argument is a value) and do this leftmost right branch of ap

4. Lazy vs. Eager Evaluation

Lazy seems better than eager, because more terms can be evaluated!
\rightarrow can you define an infinite list consisting of all prime numbers? (with lazy evaluation you can fetch the first n numbers of this list!)
> fetch c3 primelist
should compute the list [2, 3, 5]

If a term evaluates to a normal form n using eager evaluation, then it also evaluates to n using lazy evaluation.
\rightarrow can you prove this?!?
\rightarrow what about the number of eval. steps needed by eager vs. lazy?

Lazy is hard to implement efficiently because copies of unevaluated lambda terms must be shared in order not to have duplicate reductions

4. Lazy vs. Eager Evaluation

Lazy seems better than eager, because more terms can be evaluated!
\rightarrow can you define an infinite list consisting of all prime numbers? (with lazy evaluation you can fetch the first n numbers of this list!)
> fetch c3 primelist
should compute the list [2, 3, 5]

If a term evaluates to a normal form n using eager evaluation, then it also evaluates to n using lazy evaluation.
\rightarrow can you prove this?!?
\rightarrow what about the number of eval. steps needed by eager vs. lazy?

Lazy is hard to implement it efficiently because lots of duplicate reductions might be done.

5. Recursion

fct $=\lambda n . i f$ eq $n c 0$ then $c 1$ else (times $n \underset{\uparrow}{\text { recursion }} \underset{(f)}{(p r d n)))}$
e.g. fct c3 needs to unroll 4 times the definition (expand)
fct c3 = if eq c3 c0 then c1 else (times c3 (
if eq c2 c0 then c1 e1se (times c2 (
if eq c1 c0 then c1 else (times c1 (if eq c0 c0 then c1 else (..)..)
(evaluates to c6)

[^0]

5. Recursion

First, under call-by-name (lazy) evaluation.
(cbn) fixed-point combinator $Y:=\lambda f .(\lambda x . f(x \times x))(\lambda x . f(x \times x))$ $\mathrm{g}:=\lambda f c t . \lambda n . i f$ eq $n c 0$ then $c 1$ else (times $n(f c t(p r d n)))$

$$
\left.\begin{array}{rl}
\mathrm{Yg} \mathrm{c3} & \rightarrow(\lambda x . \mathrm{g}(\mathrm{xx}))(\underbrace{(\lambda x . g(x \mathrm{x})}_{=: \mathrm{h}})
\end{array}\right) \subset 3
$$

5. Recursion

First, under call-by-name (lazy) evaluation.
(cbn) fixed-point combinator $Y:=\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))$
$\mathrm{g}:=\lambda \mathrm{fct} . \lambda \mathrm{n} . \mathrm{if}$ eq n c 0 then c 1 e else (times $\mathrm{n}(\mathrm{fct}(\mathrm{prd} \mathrm{n}))$)
$\mathrm{Yg} \mathrm{c} 3 \rightarrow(\lambda x . \mathrm{g}(\mathrm{xx}))(\underbrace{(\lambda \mathrm{x} . \mathrm{g}(\mathrm{xx})}_{=: \mathrm{h}}) \mathrm{c} 3$
$\rightarrow \mathrm{g}(\mathrm{h} h) \mathrm{c} 3 \quad$ eager! $\rightarrow \mathrm{g}(\mathrm{g}(\mathrm{h} \mathrm{h})) \mathrm{c} 3 \rightarrow \mathrm{~g}(\mathrm{~g}(\mathrm{~g}(\mathrm{~h} \mathrm{~h}) \mathrm{c} 3 \ldots$
lazy! $\rightarrow \lambda n . i f$ eq n c0 then $c 1$ else (times $n(h h(p r d n))) c 3$

5. Recursion

First, under call-by-name (lazy) evaluation.
(cbn) fixed-point combinator $Y:=\lambda f .(\lambda x . f(x x))(\lambda x . f(x \times))$
$\mathrm{g}:=\lambda \mathrm{fct} . \lambda \mathrm{n} . \mathrm{if}$ eq n c 0 then c 1 else (times $\mathrm{n}(\mathrm{fct}(\mathrm{prd} \mathrm{n}))$)

lazy! $\rightarrow \lambda n$.if eq $n c 0$ then $c 1$ else (times $n(h h(p r d n))) c 3$ \rightarrow if eq c3 c0 then c1 else (times c3 (hh (prd c3)))

5. Recursion

First, under call-by-name (lazy) evaluation.
(cbn) fixed-point combinator $Y:=\lambda f$. $(\lambda x . f(x \times))(\lambda x . f(x \times x))$ $\mathrm{g}:=\lambda \mathrm{fct} . \lambda \mathrm{n} . \mathrm{if}$ eq n c 0 then c 1 else (times $\mathrm{n}(\mathrm{fct}(\mathrm{prd} \mathrm{n}))$)

$$
\mathrm{Yg} \mathrm{c3} \rightarrow(\lambda \mathrm{x} . \mathrm{g}(\mathrm{xx}))(\underbrace{(\lambda \mathrm{x} . \mathrm{g}(\mathrm{xx})}_{=: \mathrm{h}}) \mathrm{c} 3
$$

$$
\rightarrow \mathrm{g}(\mathrm{~h} \mathrm{~h}) \subset 3
$$

lazy! $\rightarrow \lambda \mathrm{n} . \mathrm{if}$ eq n c0 then c 1 else (times $\mathrm{n}(\mathrm{hh}(\mathrm{prd} \mathrm{n})))$ c3
\rightarrow if eq c3 c0 then c1 else (times c3 (hh(prd c3)))
\rightarrow times c3 (hh (prd c3))

5. Recursion

First, under call-by-name (lazy) evaluation.
(cbn) fixed-point combinator $Y:=\lambda f .(\lambda x . f(x \times))(\lambda x . f(x \times))$
$\mathrm{g}:=\lambda \mathrm{fct} . \lambda \mathrm{n} . \mathrm{if}$ eq n c 0 then c 1 else (times $\mathrm{n}(\mathrm{fct}(\mathrm{prd} \mathrm{n})))$

$$
\left.\begin{array}{rl}
\mathrm{Yg} \mathrm{c3} & \rightarrow(\lambda x . g(x x))(\underbrace{(\lambda x . g(x \mathrm{x})}_{=: \mathrm{h}})
\end{array}\right) \subset 3
$$

lazy! $\rightarrow \lambda n$.if eq $n c 0$ then $c 1$ else (times $n(h h(p r d n))) c 3$
\rightarrow if eq c3 c0 then c1 else (times c3 (hh (prd c3)))
\rightarrow times c3 (hh (prd c3))
\rightarrow times c3 (g (h h) (prd c3))

5. Recursion

First, under call-by-name (lazy) evaluation.
(cbn) fixed-point combinator $Y:=\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))$
$\mathrm{g}:=\lambda \mathrm{fct} . \lambda \mathrm{n} . \mathrm{if}$ eq nc c then c 1 else (times $\mathrm{n}(\mathrm{fct}(\mathrm{prd} \mathrm{n}))$)

$$
\rightarrow \mathrm{g}(\mathrm{~h} \mathrm{~h}) \mathrm{c} 3
$$

lazy! $\rightarrow \lambda n . i f$ eq $n c 0$ then $c 1$ else (times $n(h h(p r d n))) c 3$
\rightarrow if eq c3 c0 then c1 else (times c3 (hh (prd c3)))
\rightarrow times c3 (hh (prd c3))
\rightarrow times c3 (g (hh) (prd c3)) $\rightarrow \ldots \rightarrow$ times c3 c2 c1 c1

5. Recursion

Now, under eager (call-by-value) evaluation.
(cbv) fixed-point combinator fix := $\lambda f .(\lambda x . f(\lambda y . x \times y))(\lambda x . f(\lambda y . x \times y))$ fixg c3 \rightarrow

5. Recursion

Now, under eager (call-by-value) evaluation.
(cbv) fixed-point combinator fix $:=\lambda f .(\lambda x . f(\lambda y . x \times y))(\lambda x . f(\lambda y . x \times y))$

$$
\text { fix g c3 } \rightarrow(\lambda x . g(\lambda y . x x y))(\underbrace{\lambda x . g(\lambda y . x x y}_{=: h})) \subset 3
$$

5. Recursion

Now, under eager (call-by-value) evaluation.
(cbv) fixed-point combinator fix := $\lambda f .(\lambda x . f(\lambda y . x \times y))(\lambda x . f(\lambda y . x \times y))$

$$
\begin{aligned}
\text { fix g c3 } & \rightarrow(\lambda x . g(\lambda y . x x y))(\underbrace{(\lambda x . g(\lambda y . x x y)}_{=: h}) \subset 3 \\
& \rightarrow g(\lambda y . h \text { h y) } \mathrm{h} 3 \quad \text { " } \lambda \text {-guard" }
\end{aligned}
$$

5. Recursion

Now, under eager (call-by-value) evaluation.
(cbv) fixed-point combinator fix := $\lambda f .(\lambda x . f(\lambda y . x \times y))(\lambda x . f(\lambda y . x \times y))$

$$
\text { fix g c3 } \rightarrow(\lambda x . g(\lambda y . x x y))(\underbrace{(\lambda x \cdot g(\lambda y \cdot x x y)}_{=: h}) \subset 3
$$

$$
\rightarrow \mathrm{g}(\lambda \mathrm{y} . \mathrm{h} \mathrm{~h} \mathrm{y}) \mathrm{c} 3 \quad \text { " } \lambda \text {-guard" }
$$

$\rightarrow \lambda \mathrm{n} . \mathrm{if}$ eq n c 0 then $\mathrm{c} 1 \mathrm{else}($ times $\mathrm{n}((\lambda y . h \mathrm{~h} y)(\mathrm{prd} \mathrm{n}))) \mathrm{c} 3$

5. Recursion

Now, under eager (call-by-value) evaluation.
(cbv) fixed-point combinator fix $:=\lambda f .(\lambda x . f(\lambda y . x \times y))(\lambda x . f(\lambda y . x \times y))$

$$
\begin{aligned}
\text { fixg } \mathrm{c} 3 & \rightarrow(\lambda x . g(\lambda y . x x y))(\underbrace{(\lambda x . g(\lambda y \cdot x x y)}_{=: \mathrm{h}}) c 3 \\
& \rightarrow g(\lambda y . h \mathrm{~h} y) \subset 3 \quad \text { " } \lambda \text {-guard" }
\end{aligned}
$$

$\rightarrow \lambda n . i f$ eq $n c 0$ then $c 1$ else (times $n((\lambda y . h h y)(p r d n))) c 3$
\rightarrow if eq c3 c0 then c1 e1se (times c3 ($(\lambda y . h \mathrm{~h} y)(p r d \mathrm{c} 3))$)
\rightarrow times c3 ($\left(\lambda y . h^{h} \mathrm{y}\right)($ prd c3))

5. Recursion

Now, under eager (call-by-value) evaluation.
(cbv) fixed-point combinator fix := $\lambda f .(\lambda x . f(\lambda y . x x y))(\lambda x . f(\lambda y . x \times y))$

$\rightarrow \mathrm{g}(\lambda \mathrm{y} . \mathrm{hhy}) \mathrm{c} 3 \quad$ " λ-guard"
$\rightarrow \lambda \mathrm{n} . \mathrm{if}$ eq n c0 then $\mathrm{c} 1 \mathrm{else}($ times $\mathrm{n}((\lambda y . h \mathrm{~h} y)(\mathrm{prd} \mathrm{n}))) \mathrm{c} 3$
\rightarrow if eq c3 c0 then c1 else (times c3 $((\lambda y . h h y)(p r d c 3)))$

5. Recursion

Now, under eager (call-by-value) evaluation.
(cbv) fixed-point combinator fix := $\lambda f .(\lambda x . f(\lambda y . x \times y))(\lambda x . f(\lambda y . x \times y))$

$$
\begin{aligned}
& \text { fix g c3 } \rightarrow(\lambda x . g(\lambda y . x x y))(\underbrace{(\lambda x . g(\lambda y . x x y}_{=: ~ h})) \subset 3 \\
& \rightarrow \mathrm{~g}(\lambda \mathrm{y} . \mathrm{hh} \mathrm{y}) \mathrm{c} 3 \quad \text { " } \lambda \text {-guard" }
\end{aligned}
$$

$\rightarrow \lambda n . i f$ eq $n c 0$ then c 1 else (times $\mathrm{n}((\lambda y . \mathrm{hh} y)(p r d \mathrm{n}))$) c3
\rightarrow if eq c3 c0 then c1 else (times c3 ($(\lambda y . h h y)(p r d c 3))$) "unguard"
\rightarrow times c3 $((\lambda y . h \mathrm{hy})($ prd c3)) $\xrightarrow{\rightarrow}$ times c3 h h (prd c3)

5. Recursion

Now, under eager (call-by-value) evaluation.

$$
\begin{aligned}
& \text { (cbv) fixed-point combinator fix }:=\lambda f .(\lambda x . f(\lambda y . x x y))(\lambda x . f(\lambda y . x \times y)) \\
& \text { fixg c3 } \rightarrow(\lambda x . g(\lambda y . x x y))(\underbrace{\lambda x . g(\lambda y . x x y}_{=: ~ h})) \subset 3 \\
& \rightarrow \mathrm{~g}(\lambda \mathrm{y} . \mathrm{hh} \mathrm{y}) \mathrm{c} 3 \quad \text { " } \lambda \text {-guard" } \\
& \rightarrow \lambda \mathrm{n} . \mathrm{if} \text { eq } \mathrm{n} \mathrm{c} 0 \text { then } \mathrm{c} 1 \mathrm{e} \text { 1se (times } \mathrm{n}((\lambda y . h \mathrm{~h} y)(\operatorname{prd} \mathrm{n}))) \mathrm{c} 3 \\
& \rightarrow \text { if eq c3 c0 then c1 e1se (times c3 }((\lambda y . h h y)(p r d c 3))) \\
& \rightarrow \text { times c3 }\left(\left(\lambda y . \mathrm{hhy}^{2}(\text { prd c3)) } \xrightarrow{\rightarrow} \text { times c3 h h (prd c3) }\right.\right. \\
& \rightarrow \text { times c3 g (} \lambda \mathrm{y} . \mathrm{hhy} \text {) (prdc3) } \rightarrow \quad \ldots \quad \rightarrow \text { times c3 c2 c1 c1 }
\end{aligned}
$$

5. Recursion

Question: Can you feel why the lambda calculus is Turing complete?
Can you prove it? What does it take to be Turing complete?
6. Nameless Implementation: deBruijn Indices
redex (REDucible EXpression): ($\lambda x . t) s$
β-reduction: ($\lambda \mathrm{x}$.t)s $:=[\mathrm{x} \rightarrow \mathrm{s}] \mathrm{t}$
substitution A. only replace the FREE occurrences of x in $t!!$
$[x \rightarrow s]: \quad$ B. if replacing within ($\lambda y . u$) then y should NOT be FREE in $s!!$

DEFINE $[x \rightarrow s] t$, by induction on the structure of t :
6. Nameless Implementation: deBruijn Indices
redex (REDucible EXpression): ($\lambda x . t) s$
β-reduction: $(\lambda x . t) s:=[x \rightarrow s] t$
substitution A. only replace the FREE occurrences of x in $t!!$
$[x \rightarrow s]: \quad$ B. if replacing within ($\lambda y . u$) then y should NOT be FREE in s!!

DEFINE $[x \rightarrow s] t$, by induction on the structure of t :

1. $[x \rightarrow s] y=$
2. $[x \rightarrow s] \lambda y . t_{1}=$
3. $[x \rightarrow s] t_{1} t_{2}=$

6. Nameless Implementation: deBruijn Indices

redex (REDucible EXpression): ($\lambda x . t) s$
β-reduction: $(\lambda x . t) \mathrm{s}:=[x \rightarrow \mathrm{~s}] \mathrm{t}$
substitution
A. only replace the FREE occurrences of x in t !!
$[x \rightarrow s]$:
B. if replacing within ($\lambda \mathrm{y} . \mathrm{u}$) then y should NOT be FREE in s!!

DEFINE $[x \rightarrow s] t$, by induction on the structure of t :

1. $[x \rightarrow s] y=s$ if $y=x$, and y otherwise
2. $[x \rightarrow s] \lambda y . t_{1}=$
3. $[x \rightarrow s] t_{1} t_{2}=$

6. Nameless Implementation: deBruijn Indices

redex (REDucible EXpression): ($\lambda x . t) s$
β-reduction: $(\lambda x . t) s:=[x \rightarrow s] t$
substitution A. only replace the FREE occurrences of x in $t!!$
$[x \rightarrow s]$: B. if replacing within ($\lambda y . u$) then y should NOT be FREE in $s!!$

DEFINE $[x \rightarrow s] t$, by induction on the structure of t :

1. $[x \rightarrow s] y=s$ if $y=x$, and y otherwise
2. $[x \rightarrow s] \lambda y . t_{1}=\lambda y \cdot[x \rightarrow s] t_{1}$ if $y \neq x$ and $y \notin F V(s)$

A,B
3. $[x \rightarrow s] t_{1} t_{2}=$
6. Nameless Implementation: deBruijn Indices
redex (REDucible EXpression): ($\lambda x . t) s$
β-reduction: $(\lambda x . t) s:=[x \rightarrow s] t$
substitution A. only replace the FREE occurrences of x in $t!!$
$[x \rightarrow s]: \quad$ B. if replacing within ($\lambda \mathrm{y} . \mathrm{u}$) then y should NOT be FREE in $\mathrm{s}!!$

DEFINE $[x \rightarrow s] t$, by induction on the structure of t :

1. $[x \rightarrow s] y=s$ if $y=x$, and y otherwise
2. $[x \rightarrow s] \lambda y . t_{1}=\lambda y .[x \rightarrow s] t_{1}$ if $y \neq x$ and $y \notin F V(s)$
3. $[x \rightarrow s] t_{1} t_{2}=\left([x \rightarrow s] t_{1}\right)\left([x \rightarrow s] t_{2}\right)$
\rightarrow to appy 2., renaming of BOUND y's in t_{1} might be necessary!!!
= "alpha-conversion"

6. Nameless Implementation: deBruijn Indices

Idea: let variable occurrences directly point to their binders, rather than referring to them by name.
\rightarrow use natural numbers k , meaning "the k -th enclosing λ "
e.g. $\lambda \mathrm{x} . \lambda \mathrm{y} . \mathrm{x}(\mathrm{yx})$ BECOMES $\lambda . \lambda .1(01)$

6. Nameless Implementation: deBruijn Indices

Idea: let variable occurrences directly point to their binders, rather than referring to them by name.
\rightarrow use natural numbers k , meaning "the k -th enclosing λ "

$$
\text { e.g. } \underset{\text { distance: } 1}{\lambda x \cdot \lambda y \cdot x(y x)} \text { BECOMES } \lambda \cdot \lambda .1(01)
$$

Then, every CLOSED term has a unique deBruijn representation!
6. Nameless Implementation: deBruijn Indices

Idea: let variable occurrences directly point to their binders, rather than referring to them by name.
\rightarrow use natural numbers k , meaning "the k -th enclosing λ "
distance: 0
e.g. $\lambda \times \cdot \sqrt{y \cdot} \times(y x)$ BECOMES $\lambda . \lambda .1(01)$ distance: 1

6. Nameless Implementation: deBruijn Indices

Idea: let variable occurrences directly point to their binders, rather than referring to them by name.
\rightarrow use natural numbers k , meaning "the k -th enclosing λ "

$$
\begin{aligned}
& \text { distance: } 0 \\
& \text { e.g. } \underset{\substack{\lambda \times \cdot \lambda y \cdot x \\
\text { distance. } 1}}{ } \mathrm{y} x) \text { BECOMES } \lambda \cdot \lambda .1\binom{0}{0}
\end{aligned}
$$

Then, every CLOSED term has a unique deBruijn representation!
\rightarrow what to do with free variables??
use naming context $\Gamma \in V^{*}$. E.g., bca means $b \leftrightarrow 2, c \leftrightarrow 1, a \leftrightarrow 0$

6. Nameless Implementation: deBruijn Indices fix a naming context $\Gamma \in \mathrm{V}^{*}$. $\begin{aligned} & \text { lambda term } \underset{\text { restorenames }_{\Gamma}}{\stackrel{\text { removenames }}{\Gamma}} \text { nameless lambda term } \\ & \begin{array}{lll} (\Gamma=\mathrm{xu}) \quad \lambda y . \mathrm{uy} \leftarrow \mathrm{remov}_{\Gamma} \\ \text { resto }_{\Gamma^{\prime}} \rightarrow \end{array} \lambda .10 \quad\left(\Gamma^{\prime}=\text { xuy }\right) \end{aligned}$
$\begin{array}{lll} \text { substitution } & {[1 \rightarrow s](\lambda .2)} \\ & \begin{array}{l} \uparrow_{\Gamma^{\prime}=\mathrm{xu}} \end{array} & \begin{array}{l} \text { increment all free vars } \\ \text { in s by one! } \end{array} \\ {[j \rightarrow \mathrm{~s}]\left(\lambda . \mathrm{t}_{1}\right)=} & \lambda \cdot[j+1 \rightarrow \operatorname{shift}(1, \mathrm{~s})] \mathrm{t}_{1} & \end{array}$ shift function must keep track of BOUND vars in order to ONLY shift the FREE vars.

[^0]: \rightarrow Is there a combinator doing the unrolling, when applied to fct?

