
1

Type Systems

Lecture 2     Oct. 27th, 2004
Sebastian Maneth

http://lampwww.epfl.ch/teaching/typeSystems/2004

Today

1. What is the Lambda Calculus?

2. Its Syntax and Semantics

3. Church Booleans and Church Numerals

4. Lazy vs. Eager Evaluation  (call-by-name vs. call-by-value)

5. Recursion

6. Nameless Implementation: deBruijn Indices

1. What is the Lambda Calculus
introduced in late 1930’s by Alonzo Church and Stephen Kleene

used in 1936 by Church to prove the undecidability of the
Entscheidungsproblem

is a formal system designed to investigate

• function definition
• function application
• recursion

introduced in late 1930’s by Alonzo Church and Stephen Kleene

is a formal system designed to investigate

• function definition
• function application
• recursion

can compute the same as Turing Machines, which is
everything we can (intuitively) compute (Church-Turing Thesis).

1. What is the Lambda Calculus



2

why do we pick out the Lambda Calulus?

what do we want? 

a small core language, into which other language constructs
can be translated.

There are many such languages: Turing Machines
µ−Recursive Functions
Chomsky’s Type-0 Grammars
Cellular Automata
etc.

because types are about values of program variables.

1. What is the Lambda Calculus 2. Syntax of the Lambda Calculus
Let  V be a countable set of  variable names.

The set of lambda terms (over V) is the smallest set T such that

1.   if  x ∈ V,  then x ∈ T

2.   if  x ∈ V and  t1 ∈ T,  then  λx. t1 ∈ T

3.   if  t1, t2 ∈ T,  then  t1 t2 ∈ T

variable

abstraction

application

instead of   f(x) = x + 5

write           f  =  λx.x + 5

a lambda term (i.e., ∈ T)
representing a nameless function, which adds 5 to its parameter

Function abstraction:

2. Syntax of the Lambda Calculus

Function application: instead of   f(x)

write           f  x

Example:  (λx. x + 5) a

Conventions (to save parenthesis)

application is  left associative:    x y z  =  (x y) z     ≠ x (y z)

scope of abstraction extends as far to the right as possible:

λx. x y  =  λx. (x y)     ≠ (λ x. x) y

apply

λx a

x + 5

Abstract Syntax Tree

(AST)

“surface syntax” “abstract syntax”

2. Syntax of the Lambda Calculus

Conventions (to save parenthesis)

λx.λy.λz. x z (y z)

=  λx.(λy.λz. x z (y z))

=  λx.(λy.(λz. (x z (y z))

=  λx. (λy. (λz. ((x z) (y z))))

Example:

λx

λy

λz

apply

apply apply

x z y z
“surface syntax” “abstract syntax”

application is  left associative:    x y z  =  (x y) z     ≠ x (y z)

scope of abstraction extends as far to the right as possible:

λx. x y  =  λx. (x y)     ≠ (λ x. x) y



3

2. Semantics of the Lambda Calculus

apply

λx a

x + 5

(λx.x + 5) a
SUBSTITUTE a  for  x in   x + 5

redex  (REDucible EXpression):     ( λx. t )  t1

[ x a ] x + 5

can be reduced to (evaluates to):

=    a + 5

To compute in Lambda Calculus, ALL you do is  SUBSTITUTE!! 

β−reduction

2. Semantics of the Lambda Calculus
Example:

( λx.λy. f (y x) )  5  ( λx. x )

2. Semantics of the Lambda Calculus
Example:

( λx.λy. f (y x) )  5  ( λx. x )

= (( λx.λy. f (y x) )  5) ( λx. x ) because App binds to the left!

2. Semantics of the Lambda Calculus
Example:

( λx.λy. f (y x) )  5  ( λx. x )

= (( λx.λy. f (y x) )  5) ( λx. x )

[ x 5 ]( λy. f (y x) )  ( λx. x )
β−red.

=  ( λy. f (y 5) )  ( λx. x )

because App binds to the left!



4

2. Semantics of the Lambda Calculus
Example:

( λx.λy. f (y x) )  5  ( λx. x )

= (( λx.λy. f (y x) )  5) ( λx. x )

[ x 5 ]( λy. f (y x) )  ( λx. x )

=  ( λy. f (y 5) )  ( λx. x )

[ y λx. x ]( f (y 5) )
β−red.

=  f (λx. x  5)

β−red.
because App binds to the left!

2. Semantics of the Lambda Calculus
Example:

( λx.λy. f (y x) )  5  ( λx. x )

= (( λx.λy. f (y x) )  5) ( λx. x )

[ x 5 ]( λy. f (y x) )  ( λx. x )

=  ( λy. f (y 5) )  ( λx. x )

β−red.

=  f (λx. x  5)

β−red.

β−red.
f  5

because App binds to the left!

(normal form  =  cannot be reduced further)

[ y λx. x ]( f (y 5) )

2. Semantics of the Lambda Calculus
Example:     Does  every λ-term have a normal form?

[ x ( λx. x x ) ] ( x x )
β−red.

NO!!!

( λx. x x ) ( λx. x x )

2. Semantics of the Lambda Calculus
Example:     Does  every λ-term have a normal form?

[ x ( λx. x x ) ] ( x x )
β−red.

NO!!!

( λx. x x ) ( λx. x x )

=   ( λx. x x ) ( λx. x x )



5

2. Semantics of the Lambda Calculus
Example:     Does  every λ-term have a normal form?

[ x ( λx. x x ) ] ( x x )
β−red.

NO!!!

( λx. x x ) ( λx. x x )

=   ( λx. x x ) ( λx. x x )

β−red.
( λx. x x ) ( λx. x x )

β−red.
( λx. x x ) ( λx. x x )

…

2. Semantics of the Lambda Calculus
Example:     Does  every λ-term have a normal form?

NO!!!

( λx. x x ) ( λx. x x ) is called the omega combinator

=: omega

combinator =   closed lambda term

=   lambda term with  no free variables

The simplest  combinator, identity:         id :=  λx. x

2. Semantics of the Lambda Calculus
Free vs. Bound Variables:

λx. x y  =  λx. (x y)

scope of x
x is bound in its scope

bound free

Define the  set of free variables of a term t, FV(t), as

if  t = x ∈ V,  then   FV(t)  =  { x }

if  t = λx. t1,  then   FV(t)  =  FV(t1) \ { x }

if  t =  t1 t2,   then   FV(t)  =  FV(t1) ∪ FV(t2)

3. Church Booleans and Numerals
How to encode BOOLEANS into the lambda calculus?

tru takes two arguments, selects the FIRST
fls takes two arguments, selects the SECOND

THEN:   if-then-else can be defined as:
test x u w =  “apply x to  u w”

=  (λk. λm. λn. k m n)  x u w

=: test

tru :=  λm. λn. m
fls :=  λm. λn.  n

test tru u w
β−red. … β−red.

u



6

3. Church Booleans and Numerals
How to encode BOOLEANS into the lambda calculus?

tru takes two arguments, selects the FIRST
fls takes two arguments, selects the SECOND
tru :=  λm. λn. m
fls :=  λm. λn.  n
test :=  λk. λm. λn.  k m n

How to do  “and”  on these BOOLEANS?

and u w =   “apply u to  w fls”
:=  (λm. λn. m n fls)  u w

=: and

3. Church Booleans and Numerals
How to encode BOOLEANS into the lambda calculus?

tru takes two arguments, selects the FIRST
fls takes two arguments, selects the SECOND
tru :=  λm. λn. m
fls :=  λm. λn.  n
test :=  λk. λm. λn.  k m n

How to do  “and”  on these BOOLEANS?

and u w =   “apply u to  w fls”
:=  (λm. λn. m n fls)  u w

=: and

Define the  or and  not functions!

3. Church Booleans and Numerals
How to encode NUMBERS into the lambda calculus?

c0 :=  λs. λz. z
c1 :=  λs. λz. s z
c2 :=  λs. λz. s (s z)
c3 :=  λs. λz. s (s (s z))
etc.

THEN, the successor function can be defined as 

scc :=  λn. λs. λz. s (n s z)

scc c0
β−red.

λs. λz. s (c0 s z)

just like  fls! 
Select the second argument.

β−red.
λs. λz. s z   =  c1

3. Church Booleans and Numerals
How to encode NUMBERS into the lambda calculus?

c0 :=  λs. λz. z
c1 :=  λs. λz. s z
c2 :=  λs. λz. s (s z)
c3 :=  λs. λz. s (s (s z))

scc :=  λn. λs. λz. s (n s z)

How to do  “plus”  and  “times”  on these Church Numerals?

plus :=    λm. λn. λs. λz.  m s (n s z)

“apply m times the successor to n”



7

3. Church Booleans and Numerals
How to encode NUMBERS into the lambda calculus?

c0 :=  λs. λz. z
c1 :=  λs. λz. s z
c2 :=  λs. λz. s (s z)
c3 :=  λs. λz. s (s (s z))

scc :=  λn. λs. λz. s (n s z)

How to do  “plus”  and  “times”  on these Church Numerals?

plus :=    λm. λn. λs. λz.  m s (n s z)

“apply m times the successor to n”

times :=     λm. λn.   m  (plus n)  c0

“apply m times  (plus n)  to  c0”

3. Church Booleans and Numerals
How to encode NUMBERS into the lambda calculus?

c0 :=  λs. λz. z
c1 :=  λs. λz. s z
c2 :=  λs. λz. s (s z)
c3 :=  λs. λz. s (s (s z))

scc :=  λn. λs. λz. s (n s z)

plus :=    λm. λn. λs. λz.  m s (n s z)

Questions:

1.  Write a function  subt for subtraction on Church Numerals. 

2. How can other datatypes be encoded into the lambda calculus,
like, e.g.,  lists,  trees,  arrays, and  variant records? 

4. Lazy vs. Eager Evaluation

tru id omega

What does this lambda term evaluate to??

4. Lazy vs. Eager Evaluation

(λm. λn. m)  (λx. x)  ((λx. x x) (λx. x x))

where to start evaluating?  which redex??

tru id omega

What does this lambda term evaluate to??

apply
apply

λm

λn

m

id

apply
λx λx

apply apply

x x x x



8

4. Lazy vs. Eager Evaluation

(λm. λn. m)  (λx. x)  ((λx. x x) (λx. x x))

where to start evaluating?  which redex??

tru id omega

What does this lambda term evaluate to??

apply
apply

λm

λn

m

id

apply
λx λx

apply apply

x x x x

redex1 redex2

4. Lazy vs. Eager Evaluation

(λm. λn. m)  (λx. x)  ((λx. x x) (λx. x x))

where to start evaluating?  which redex??

apply
apply

λm

λn

m

id

tru id omega

What does this lambda term evaluate to??

apply
λx λx

apply apply

x x x x

redex1 redex2

if we always reduce redex2

then this lambda term has NO

semantics.

4. Lazy vs. Eager Evaluation
A redex if  outermost, if in the AST it has no ancestor that is a redex.

ap ap
ap

λ λ
λ

outermost  redexes

4. Lazy vs. Eager Evaluation
A redex if  outermost, if in the AST it has no ancestor that is a redex.

ap ap
ap

λ λ
λ

outermost  redexes

A redex if  leftmost, if in the AST it has no redex to the left of it.



9

4. Lazy vs. Eager Evaluation
A redex if  outermost, if in the AST it has no ancestor that is a redex.

ap ap
ap

λ λ
λ

outermost  redexes

A redex if  leftmost, if in the AST it has no redex to the left of it.

ap
λ

4. Lazy vs. Eager Evaluation
A redex if  outermost, if in the AST it has no ancestor that is a redex.

ap ap
ap

λ λ
λ

outermost  redexes

A redex if  leftmost, if in the AST it has no redex to the left of it.

ap
λ

4. Lazy vs. Eager Evaluation
A redex if  outermost, if in the AST it has no ancestor that is a redex.

ap ap
ap

λ λ
λ

outermost  redexes

A redex if  leftmost, if in the AST it has no redex to the left of it.

ap
λleftmost

4. Lazy vs. Eager Evaluation

ap ap
ap

λ λ
λ

outermost  redexesap
λleftmost

Evaluation Strategies:

normal order always reduce  leftmost outermost redex  first

call-by-name    like normal order, but NOT inside abstractions

call-by-need like call-by-name but with sharing

call-by-value reduce only “value-redexes”  (= argument is a value)  
and do this  leftmost

la
zy

ea
ge

r

right branch of ap



10

4. Lazy vs. Eager Evaluation
Lazy seems better than eager, because more terms can be evaluated!

Lazy is hard to implement efficiently because copies of unevaluated
lambda terms must be shared in order not to have duplicate reductions

can you define an infinite list consisting of all prime numbers?
(with lazy evaluation you can fetch the first n numbers of this list!)

> fetch c3 primelist

should compute the list  [ 2, 3, 5 ]

If a term evaluates to a  normal form n using eager evaluation,
then it also evaluates to  n using lazy evaluation.

can you prove this?!?
what about the number of eval. steps needed by eager vs. lazy?

4. Lazy vs. Eager Evaluation

If a term evaluates to a  normal form n using eager evaluation,
then it also evaluates to  n using lazy evaluation.

can you prove this?!?
what about the number of eval. steps needed by eager vs. lazy?

Most FL’s use call-by-value. Also the TaPL book!

Lazy is hard to implement it efficiently because lots of duplicate 
reductions might be done.

Lazy seems better than eager, because more terms can be evaluated!

can you define an infinite list consisting of all prime numbers?
(with lazy evaluation you can fetch the first n numbers of this list!)

> fetch c3 primelist

should compute the list  [ 2, 3, 5 ]

5. Recursion
fct = λn.if eq n c0 then c1 else (times n (fct (prd n)))

recursion

e.g.  fct c3 needs to  unroll 4 times the definition

fct c3 = if eq c3 c0 then c1 else (times c3 (  
if eq c2 c0 then c1 else (times c2 (
if eq c1 c0 then c1 else (times c1 (
if eq c0 c0 then c1 else (..)..)

( evaluates to c6 )

(expand)

5. Recursion
fct = λn.if eq n c0 then c1 else (times n (fct (prd n)))

recursion

e.g.  fct c3 needs to  unroll 4 times the definition

fct c3 = if eq c3 c0 then c1 else (times c3 (  
if eq c2 c0 then c1 else (times c2 (
if eq c1 c0 then c1 else (times c1 (
if eq c0 c0 then c1 else (..)..)

( evaluates to c6 )

Is there a  combinator doing the unrolling, when applied to fct?

(expand)



11

5. Recursion
fct = λn.if eq n c0 then c1 else (times n (fct (prd n)))

recursion

Is there a  combinator doing the unrolling, when applied to fct?

such a combinator is similar to omega!                      (λx. x x) (λx. x x)

additionally to copying itself it should each time

split of one application of the definition of fct

5. Recursion
First, under call-by-name (lazy) evaluation. 

(cbn) fixed-point combinator   Y :=   λf. (λx. f (x x)) (λx. f (x x))

g  :=  λfct. λn.if eq n c0 then c1 else (times n (fct (prd n)))

Y g c3

5. Recursion

(cbn) fixed-point combinator   Y :=   λf. (λx. f (x x)) (λx. f (x x))

Y g c3 (λx. g (x x)) (λx. g (x x)) c3

=: h

g (h h) c3

First, under call-by-name (lazy) evaluation. 

g  :=  λfct. λn.if eq n c0 then c1 else (times n (fct (prd n)))

5. Recursion

(cbn) fixed-point combinator   Y :=   λf. (λx. f (x x)) (λx. f (x x))

Y g c3 (λx. g (x x)) (λx. g (x x)) c3

g (h h) c3

λn.if eq n c0 then c1 else (times n (h h (prd n))) c3lazy!

First, under call-by-name (lazy) evaluation. 

=: h

g  :=  λfct. λn.if eq n c0 then c1 else (times n (fct (prd n)))



12

5. Recursion

(cbn) fixed-point combinator   Y :=   λf. (λx. f (x x)) (λx. f (x x))

Y g c3 (λx. g (x x)) (λx. g (x x)) c3

g (h h) c3

λn.if eq n c0 then c1 else (times n (h h (prd n))) c3lazy!

eager! g (g (h h)) c3 g(g(g(h h) c3  …

First, under call-by-name (lazy) evaluation. 

=: h

g  :=  λfct. λn.if eq n c0 then c1 else (times n (fct (prd n)))

5. Recursion

(cbn) fixed-point combinator   Y :=   λf. (λx. f (x x)) (λx. f (x x))

Y g c3 (λx. g (x x)) (λx. g (x x)) c3

g (h h) c3

λn.if eq n c0 then c1 else (times n (h h (prd n))) c3

if eq c3 c0 then c1 else (times c3 (h h (prd c3)))

lazy!

First, under call-by-name (lazy) evaluation. 

=: h

g  :=  λfct. λn.if eq n c0 then c1 else (times n (fct (prd n)))

5. Recursion

(cbn) fixed-point combinator   Y :=   λf. (λx. f (x x)) (λx. f (x x))

Y g c3 (λx. g (x x)) (λx. g (x x)) c3

g (h h) c3

λn.if eq n c0 then c1 else (times n (h h (prd n))) c3

if eq c3 c0 then c1 else (times c3 (h h (prd c3)))

times c3 (h h (prd c3))

lazy!

First, under call-by-name (lazy) evaluation. 

=: h

g  :=  λfct. λn.if eq n c0 then c1 else (times n (fct (prd n)))

5. Recursion

(cbn) fixed-point combinator   Y :=   λf. (λx. f (x x)) (λx. f (x x))

Y g c3 (λx. g (x x)) (λx. g (x x)) c3

g (h h) c3

λn.if eq n c0 then c1 else (times n (h h (prd n))) c3

if eq c3 c0 then c1 else (times c3 (h h (prd c3)))

times c3 (h h (prd c3))

times c3 (g (h h) (prd c3))

lazy!

First, under call-by-name (lazy) evaluation. 

=: h

g  :=  λfct. λn.if eq n c0 then c1 else (times n (fct (prd n)))



13

5. Recursion

(cbn) fixed-point combinator   Y :=   λf. (λx. f (x x)) (λx. f (x x))

Y g c3 (λx. g (x x)) (λx. g (x x)) c3

g (h h) c3

λn.if eq n c0 then c1 else (times n (h h (prd n))) c3

if eq c3 c0 then c1 else (times c3 (h h (prd c3)))

times c3 (h h (prd c3))

times c3 (g (h h) (prd c3))   … times c3 c2 c1 c1

lazy!

First, under call-by-name (lazy) evaluation. 

=: h

g  :=  λfct. λn.if eq n c0 then c1 else (times n (fct (prd n)))

5. Recursion
Now, under  eager (call-by-value)  evaluation. 

(cbv) fixed-point combinator   fix :=   λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))

fix g c3

5. Recursion
Now, under  eager (call-by-value)  evaluation. 

(cbv) fixed-point combinator   fix :=   λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))

fix g c3 (λx. g (λy. x x y)) (λx. g (λy. x x y)) c3

=: h

5. Recursion
Now, under  eager (call-by-value)  evaluation. 

(cbv) fixed-point combinator   fix :=   λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))

fix g c3 (λx. g (λy. x x y)) (λx. g (λy. x x y)) c3

=: h

g (λy. h h y) c3 “λ-guard”



14

5. Recursion
Now, under  eager (call-by-value)  evaluation. 

(cbv) fixed-point combinator   fix :=   λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))

fix g c3 (λx. g (λy. x x y)) (λx. g (λy. x x y)) c3

=: h

g (λy. h h y) c3

λn.if eq n c0 then c1 else (times n ((λy. h h y)(prd n))) c3

“λ-guard”

5. Recursion
Now, under  eager (call-by-value)  evaluation. 

(cbv) fixed-point combinator   fix :=   λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))

fix g c3 (λx. g (λy. x x y)) (λx. g (λy. x x y)) c3

=: h

g (λy. h h y) c3

λn.if eq n c0 then c1 else (times n ((λy. h h y)(prd n))) c3

“λ-guard”

if eq c3 c0 then c1 else (times c3 ((λy. h h y)(prd c3)))

5. Recursion
Now, under  eager (call-by-value)  evaluation. 

(cbv) fixed-point combinator   fix :=   λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))

fix g c3 (λx. g (λy. x x y)) (λx. g (λy. x x y)) c3

=: h

g (λy. h h y) c3

λn.if eq n c0 then c1 else (times n ((λy. h h y)(prd n))) c3

“λ-guard”

if eq c3 c0 then c1 else (times c3 ((λy. h h y)(prd c3)))

times c3 ((λy. h h y)(prd c3))

5. Recursion
Now, under  eager (call-by-value)  evaluation. 

(cbv) fixed-point combinator   fix :=   λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))

fix g c3 (λx. g (λy. x x y)) (λx. g (λy. x x y)) c3

=: h

g (λy. h h y) c3

λn.if eq n c0 then c1 else (times n ((λy. h h y)(prd n))) c3

“λ-guard”

if eq c3 c0 then c1 else (times c3 ((λy. h h y)(prd c3)))

times c3 ((λy. h h y)(prd c3))  times c3 h h (prd c3)
“unguard”



15

5. Recursion
Now, under  eager (call-by-value)  evaluation. 

(cbv) fixed-point combinator   fix :=   λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))

fix g c3 (λx. g (λy. x x y)) (λx. g (λy. x x y)) c3

=: h

g (λy. h h y) c3

λn.if eq n c0 then c1 else (times n ((λy. h h y)(prd n))) c3

“λ-guard”

if eq c3 c0 then c1 else (times c3 ((λy. h h y)(prd c3)))

times c3 g (λy. h h y) (prd c3)  … times c3 c2 c1 c1

times c3 ((λy. h h y)(prd c3))  times c3 h h (prd c3)
“unguard”

5. Recursion

Question:  Can you feel why the lambda calculus is Turing complete?

Can you prove it?  What does it take to be Turing complete?

6. Nameless Implementation: deBruijn Indices

redex  (REDucible EXpression):     ( λx. t )  s

β−reduction:   ( λx. t ) s :=    [ x s ] t

substitution A.  only replace the FREE occurrences of x in t!!   
[ x s ] : B.  if replacing within ( λy.u ) then y should NOT be FREE in s!! 

DEFINE  [ x s ] t,  by induction on the structure of t:

6. Nameless Implementation: deBruijn Indices

redex  (REDucible EXpression):     ( λx. t )  s

β−reduction:   ( λx. t ) s :=    [ x s ] t

DEFINE  [ x s ] t,  by induction on the structure of t:

1.   [ x s ] y =   

3.   [ x s ] t1 t2 =  

2.   [ x s ] λy. t1 =

substitution A.  only replace the FREE occurrences of x in t!!   
[ x s ] : B.  if replacing within ( λy.u ) then y should NOT be FREE in s!! 



16

6. Nameless Implementation: deBruijn Indices

redex  (REDucible EXpression):     ( λx. t )  s

β−reduction:   ( λx. t ) s :=    [ x s ] t

DEFINE  [ x s ] t,  by induction on the structure of t:

1.   [ x s ] y =   s if y=x, and y otherwise

3.   [ x s ] t1 t2 =  

2.   [ x s ] λy. t1 =

substitution A.  only replace the FREE occurrences of x in t!!   
[ x s ] : B.  if replacing within ( λy.u ) then y should NOT be FREE in s!! 

6. Nameless Implementation: deBruijn Indices

redex  (REDucible EXpression):     ( λx. t )  s

β−reduction:   ( λx. t ) s :=    [ x s ] t

DEFINE  [ x s ] t,  by induction on the structure of t:

1.   [ x s ] y =   s if y=x, and y otherwise

3.   [ x s ] t1 t2 =  

2.   [ x s ] λy. t1 = λy. [ x s ] t1    if  y≠x and y∉ FV(s)          A,B

substitution A.  only replace the FREE occurrences of x in t!!   
[ x s ] : B.  if replacing within ( λy.u ) then y should NOT be FREE in s!! 

6. Nameless Implementation: deBruijn Indices

redex  (REDucible EXpression):     ( λx. t )  s

β−reduction:   ( λx. t ) s :=    [ x s ] t

DEFINE  [ x s ] t,  by induction on the structure of t:

1.   [ x s ] y =   s if y=x, and y otherwise

3.   [ x s ] t1 t2 =  ([ x s ] t1) ([ x s ] t2)

2.   [ x s ] λy. t1 = λy. [ x s ] t1    if  y≠x and y∉ FV(s)          A,B

substitution A.  only replace the FREE occurrences of x in t!!   
[ x s ] : B.  if replacing within ( λy.u ) then y should NOT be FREE in s!! 

6. Nameless Implementation: deBruijn Indices

redex  (REDucible EXpression):     ( λx. t )  s

β−reduction:   ( λx. t ) s :=    [ x s ] t

DEFINE  [ x s ] t,  by induction on the structure of t:

1.   [ x s ] y =   s if y=x, and y otherwise

3.   [ x s ] t1 t2 =  ([ x s ] t1) ([ x s ] t2)

2.   [ x s ] λy. t1 = λy. [ x s ] t1    if  y≠x and y∉ FV(s)          A,B

to appy 2.,  renaming of  BOUND y’s  in  t1 might be necessary!!!
= “alpha-conversion”

substitution A.  only replace the FREE occurrences of x in t!!   
[ x s ] : B.  if replacing within ( λy.u ) then y should NOT be FREE in s!! 



17

6. Nameless Implementation: deBruijn Indices

Idea:  let variable occurrences directly point to their binders,
rather than referring to them by name.

use natural numbers k, meaning  “the k-th enclosing λ”

e.g.   λx. λy. x ( y x )    BECOMES    λ. λ. 1 ( 0 1 )

6. Nameless Implementation: deBruijn Indices

Idea:  let variable occurrences directly point to their binders,
rather than referring to them by name.

e.g.   λx. λy. x ( y x )    BECOMES    λ. λ. 1 ( 0 1 )

distance: 1

distance: 0

use natural numbers k, meaning  “the k-th enclosing λ”

6. Nameless Implementation: deBruijn Indices

Idea:  let variable occurrences directly point to their binders,
rather than referring to them by name.

e.g.   λx. λy. x ( y x )    BECOMES    λ. λ. 1 ( 0 1 )

distance: 1

distance: 0

use natural numbers k, meaning  “the k-th enclosing λ”

Then, every CLOSED term has a unique deBruijn representation!

6. Nameless Implementation: deBruijn Indices

Idea:  let variable occurrences directly point to their binders,
rather than referring to them by name.

e.g.   λx. λy. x ( y x )    BECOMES    λ. λ. 1 ( 0 1 )

distance: 1

distance: 0

use natural numbers k, meaning  “the k-th enclosing λ”

what to do with free variables??

use naming context Γ ∈ V*.  E.g.,  bca means  b↔2, c↔1, a↔0 

Then, every CLOSED term has a unique deBruijn representation!



18

6. Nameless Implementation: deBruijn Indices
fix a naming context Γ ∈ V*.

lambda term nameless lambda term
removenamesΓ

restorenamesΓ

λy. u y(Γ = xu)
λ. 1 0 (Γ’ = xuy)

removΓ
restoΓ’

substitution [ 1 s ]( λ. 2 )
Γ=xu Γ’=Γy

increment all free vars 
in s by one!

[ j s ](λ. t1)   =     λ. [ j+1 shift(1, s) ] t1

shift function must keep track of BOUND vars in order 
to ONLY shift the FREE vars.

6. Nameless Implementation: deBruijn Indices

substitution [ 1 s ]( λ. 2 )
Γ=xu Γ’=Γy

increment all free vars 
in s by one!

[ j s ](λ. t1)   =     λ. [ j+1 shift(1, s) ] t1

shift function must keep track of BOUND vars in order 
to ONLY shift the FREE vars.

shift(d, s)  :=  shiftb(d, 0, s)
DON’T shift vars with index <0 !!

6. Nameless Implementation: deBruijn Indices

substitution [ 1 s ]( λ. 2 )
Γ=xu Γ’=Γy

increment all free vars 
in s by one!

[ j s ](λ. t1)   =     λ. [ j+1 shift(1, s) ] t1

shift function must keep track of BOUND vars in order 
to ONLY shift the FREE vars.

shift(d, s)  :=  shiftb(d, 0, s)
DON’T shift vars with index <0 !!

shiftb(d, b, k)       =     k  if k<b, and  k+d otherwise

shiftb(d, b, λ. t1)   =     λ. shiftb(d, b+1, t1)
shiftb(d, b, t1 t2)   =     shiftb(d, b, t1)  shiftb(d, b, t2)

6. Nameless Implementation: deBruijn Indices

fix a naming context Γ ∈ V*.

removenames(Γ, x)         =   index of rightmost x in Γ
removenames(Γ, λx. t1)  =    λ. removenames(Γx, t1)
removenames(Γ, t1 t2)     =   removenames(Γ, t1) removenames(Γ, t2)

restorenames(Γ, k)       =   k-th name in Γ
restorenames(Γ, λ. t)    =   λx. restorenames(Γx, t1)

x is the first name not in Γ
restorenames(Γ, t1 t2)   =   restorenames(Γ, t1) restorenames(Γ, t2)


