1. Organizational Matters
2. What is this course about?

3. Where do “types” come from?

4. Def. of the small language Expr. Its syntax and semantics.

Lecture 1 Oct. 20th, 2004 5

. Structural Induction on Expr’s
Sebastian Maneth

http://lampwww.epfl.ch/teaching/typeSystems/2004

" SN "
1. Organizational Matters 1. Organizational Matters
Lectures: Exercises (lab): Course Book: Benjamin Pierce, “Types and Programming Languages”
We 13:15-15:00, INM203 We 15:15-17:00, INR 331 MIT Press, 2002.
Sebastian Maneth Burak Emir Types and
BC360, 021-69 31226 INR320, 021-69 36867 P >
rogramming o)
L We will strictly follow this book!
(last 3 lectures by Martin Odersky) A

So: Good to buy it!

To get credits you have to:

/3 { > 1-2 written assignments B
-> one programming assignment - =" i
2/3 - oral examination

" JEE " JEE
Type Systems for Programming Languages Type Systems for Programming Languages

exe

What for ??
Definition

of progJang. P A compiler for P

- to prevent execution errors.

Definition of |::> A typechecker C

A PL in which all well-typed programs are free of execution errors type system T for T

is called type sound.
program

- is (P, T) type sound?

- is T decidable?

-> does C correctly implement T?

g — " JEE
What you will learn in this course: Type Systems in Programming Languages
272
+ how to define a type system T (to allow for What for 77
unambiguous implementations) - to prevent execution errors.

* how to formally prove that (P, T) is type sound

» how to implement a typechecker for T

Execution Errors

trapped examples:

computation stops immediately + division by zero

untrapped

« jump to a wrong addr.
later causes arbitrary behavior

« accessing past the end
of an array

A program is SAFE if it does not have untrapped errors.

A PLis SAFE if all its programs are safe.

* accessing an illegal addr.

"
Execution Errors

examples:
trapped o
computation stops immediately + division by zero

« accessing an illegal addr.

untrapped

* jump to a wrong addr.
later causes arbitrary behavior

« accessing past the end
of an array

A program is SAFE if it does not have untrapped errors.

A PLis SAFE if all its programs are.

trapped + some “forbidden” untrapped errors := well-behaved

What is a TYPE, in our context?

A type is an upper bound of the range of values that

a program variable can assume during execution.

e.g. if x has type Boolean, then in all runs it should
only take one of the values true / false.

-> not(x) has a meaning in every run

PLs in which variables can be given nontrivial types
are called TYPED languages.

" JEE
safe/unsafe and typed/untyped

| typed untyped

safe ML, Java LISP
unsafe C Assembler
safety = integrity of run-time structures

= enables garbage collection

I

saves code size / develop. time

(price: performance)

" JEE
safe/unsafe and typed/untyped

| typed untyped

safe ML, Java LISP

unsafe C Assembler

safety = integrity of run-time structures

enables garbage collection

I

saves code size / develop. time

(price: performance)

var x : Boolean
| . typechecker should

/ complain!
10;

caveat: of course no one knows if this line will ever be executed!
... but ... it just not SAFE to have it.

should not be allowed to write such a program: it has no meaning!

TYPE SYSTEMS are there to PROTECT YOU from making

stupid (obvious) mistakes.

" JEE
Type Theory is much older than PLs!

Bertrand Russell (1872-1970)

1901 Russell's Paradox LetP ={Q csets | Q[Q}
then: PeP & PUOP

= Naive set theory is inconsistent!
= MUST eliminate self-referential defs.
to make set theory consistent

HOW?

1903 define a hierarchy of types: individuals, sets, sets of set, etc.

Any well defined set can only have elements from lower levels.

" JEE
Course Outline

« today: Intro, Arithm. Expressions, Induction, Evaluation - LAB1

* next: (untyped) Lambda-Calculus - LAB2 untyped A-evaluator
* 319 Simply-Typed Lambda-Calculus - LAB3 simply typed w. let/fix
« 4r: Simple Extensions, Subtyping > LAB4 subtyping on records
« 5th: Subtyping, Featherweight Java > LAB5

+ 6!": Recursive Types |

« 7!: Recursive Types Il

« 8" Polymorphism |

« 9th: Polymorphism I

+ 10 Bounded Quantification

+ 11-13%: Scala’s Type System (by Martin Odersky)

" JEE
Syntax and Semantics of PLs

1960 Irons, Syntax-Directed Compiler for ALGOL 60

— 1 Compiler ——

" JEE
Syntax and Semantics of PLs

1960 Irons, Syntax-Directed Compiler for ALGOL 60

Compiler |——

Defining | Translating

" JEE
Syntax and Semantics of PLs

1960 Irons, Syntax-Directed Compiler for ALGOL 60

Compiler

Defining | Translating

1966 Younger, O(n”3) Parsing of Context-Free Grammars

Syntax

— — Parse Tree Translator
Check

" JE
Syntax and Semantics of PLs
Until today, EBNF (ext. cf. grammar) is used to describe
the syntax of a programming language.

Example: Arithmetic Expressions

Expr ::= true | false | zero
1= if Expr then Expr else Expr
succ Expr
: pred Expr
Expr ::= isZero Expr

Derivable Expressions:

- pred succ zero
- ifisZero pred succ zero then zero else true
- if zero then true else false

" JEE
Syntax and Semantics of PLs
Until today, EBNF (ext. cf. grammar) is used to describe
the syntax of a programming language.

Example: Arithmetic Expressions

Expr ::= true | false | zero
Expr ::= if Expr then Expr else Expr
Expr succ (Expr)

Expr pred (Expr)
Expr ::= isZero (Expr)

Derivable Expressions:

- pred (succ (zero))
- if isZero (pred (succ (zero))) then zero else true
- if zero then true else false

" JEE
Syntax and Semantics of PLs
Until today, EBNF (ext. cf. grammar) is used to describe
the syntax of a programming language.

Example: Arithmetic Expressions

Expr ::= true | false | zero

Expr ::= if Expr then Expr else Expr
Expr ::= succ (Expr)

Expr ::= pred (Expr)

Expr ::= isZero (Expr)

Derivable Expressions:

- pred (succ (zero))
- ifisZero (pred (succ (zero))) then zero else true
- if zero then true else false

semantics??

" JEE
Syntax and Semantics of PLs

Alternative Formalism: Inference Rules

The set of expressions is the smallest set E such that:

true € E false e E zero e E
t €eE t€eE teE
succt, e E predt, € E isZerot; € E

t,eE t,eE t;eE

if t, thent, elset; € E

" JEE
Syntax and Semantics of PLs

1. Operational Semantics: behavior defined in terms of abstract

machines

. Denotational Semantics: maps programs by an interpretation
function into a collection of semantic domains (such as, e.g.,
numbers, functions, etc.)

3. Axiomatic Semantics: proves properties of a program by

applying laws about program behavior (e.g., given that properties
P hold before a statement, what properties Q hold after executing
it?)

" JEE
Syntax and Semantics of PLs

1. Operational Semantics: behavior defined in terms of abstract
machines

2. Denotational Semantics: maps programs by an interpretation
function into a collection of semantic domains (such as, e.b.,
numbers, functions, etc)

3. Axiomatic Semantics: proves properties of a program by
applying laws about program behavior (e.g., given that properties
P hold before a statement, what properties Q hold after executing
it?)

" JE
Semantics of Expr

Expr ::= true | false | zero

Expr if Expr then Expr else Expr
Expr succ (Expr)

Expr pred (Expr)

Expr ::= isZero (Expr)

Val ::= true | false | Nval

NVal ::= zero | succ NVal

| Evaluation Relation — on Expr's

if true then t, else t; » t,

if false then t, else t; — t3

t =t
ift; thent, elset; —
if t;” then t, else t5

" JEE
Semantics of Expr

| Evaluation Relation — on Expr’s

Expr ::= true | false | zero
Expr if Expr then Expr else Expr)
Expr ;= succ (Expr) if true then t, else t; = t,
Expr pred (Expr))
Expr ::= isZero (Expr) if false then t, else t; - t;
Val true | false | NVal bt

al = true | false a T —
NVal ::= zero | succ NVal ift, thent; else t; —

if t,” then t, else t3
=t =t =t

succ t; — succ t;’ pred t; — pred t;’ isZero t; — isZero t;’

pred zero — zero isZero zero — true

pred succ nv, — nv, isZero succ nv, — false

" JEE
Semantics of Expr
Example:

=t =t

if isZero pred succ pred zero then zero else succ zero

=t
if t, thent, elset; —
ift," thent, else t; E

=t

succ t; — succ ty’
pred zero — zero

pred succ nv, — nv,

pred t; — pred t;’

isZero t, — isZero t;’

isZero zero — true

isZero succ nv, — false

" JEE
Semantics of Expr

Example: if isZero pred succ|p

redex

then zero else succ zero

t, =t
if t; thent, elset; —
if t,” thent, else t; E

t, =t t, =t =t

succ t; — succ t;’ pred t, — pred t;’ isZero t; — isZero t;’

isZero zero — true

pred zero — zero

pred succ nv; = nv, isZero succ nv, — false

" JE
Semantics of Expr

Example: if isZero pred succ|p

redex

then zero else succ zero

- if isZero pred succ zero then zero else succ zero

ot
ift, thenty else t; —
ift;” thent, else t; E
SR t =t 4=t
succ t; — succ t;’ pred t; — pred t;’ isZero t; — isZero t;’

pred zero — zero isZero zero — true

pred succ nv; = nv, isZero succ nv, — false

" JEE
Semantics of Expr

Example: if isZero pred succ then zero else succ zero
rede

- if isZero|pred succ zero then zero else succ zero

=t
ift, thent, elset; —

ift," thent, else t; E

=t =t =t

succ t; — succ t;’ pred t; — pred t;’ isZero t; — isZero t;’

pred zero — zero isZero zero — true

pred succ nv, — nv,; isZero succ nv, — false

" JEE
Semantics of Expr

Example: if isZero pred succ then zero else succ zero
rede:

- if isZero|pred succ zero then zero else succ zero

- if isZero zero then zero else succ zero
t, =t
if t, thent, elset; —
ift," thent, else t; E
=t =t =t

succ t; — succ ty’ pred t; — pred t;’ isZero t, — isZero t;’

pred zero — zero

pred succ nv, — nv,

isZero zero — true

isZero succ nv, — false

" JE " JEE
Semantics of Expr Semantics of Expr
Example: if isZero pred succ then zero else succ zero Example: if isZero pred succthen zero else succ zero
-+ if isZerothen zero else succ zero - if isZerothen zero else succ zero
redex. redex
- if‘isZero zero ‘then zero else succ zero - if‘isZero zero ‘then zero else succ zero
— if true then zero else succ zero
t, =t
if t; thent, elset; —
if t,” thent, else t; E
t, =t t, =t =t t, =t t, =t t, =t
succ t; — succ t;’ pred t, — pred t;’ isZero t; — isZero t;’ succ t; — succ t;’ pred t; — pred t;’ isZero t; — isZero t;’
pred zero — zero pred zero — zero isZero zero — true
pred succ nv; = nv, isZero succ nv, — false pred succ nv; = nv, isZero succ nv, — false
" JE " JEE
Semantics of Expr Semantics of Expr
Example: if isZero pred succ then zero else succ zero Example: if isZero pred succ|p then zero else succ zero
-+ if isZerothen zero else succ zero - if isZerothen zero else succ zero
- if‘isZero zero ‘then zero else succ zero - if‘isZero zero ‘then zero else succ zero
redex, redex,
- ‘ if true then zero else succ zero - ‘ if true then zero else succ zero
- zero
=t =t =t =t =t =t
succ t; — succ t;’ pred t; — pred t;’ isZero t; — isZero t;’ succ t; — succ ty’ pred t; — pred t;’ isZero t, — isZero t;’
pred zero — zero if true thenty else t; —» 1, pred zero — zero if true then t, else t; =+ t,
pred succ nv, — nv, isZero succ nv, — false isZero zero — true pred succ nv, — nv, isZero succ nv, — false isZero zero — true

" JEE
Induction on the Structure of Expr's

The set of expressions is the smallest set E such that:
1. true, false, zero € E

2. if ty, t,, t;€ E, then succt,, pred t,, isZerot, € E
and ift,thent,elset;eE

inductive definition

- we can define / proof things about Expr’s by induction!

Example: for any Expr t define its size as

1.if t=true | false | zero then size(t)=0

2.if t=succ t1 | pred t, | isZero t, then size(t) = size(t,) + 1
if t=ift, thent,elset; then size(t) = size(t,) + size(t,) + size(t;) + 1

O
Proof by Induction on the Structure of Expr’s
Theorem. — is deterministic: if t -t andt—t” then t' =t”

Proof. by induction on the structure of t
1. if t=true|false|zero thent' =t"=t

2. if t=succt, then

=t

T o . only rule for succ(..
succt; — succty’ y ()

" JEE
Proof by Induction on the Structure of Expr’s
Theorem. — is deterministic: if t —+t andt —t” then t =t”

Proof. by induction on the structure of t

1. if t=true|false|zero thent =t"=t

2. if t=succt, then t =succt and t” =succt,”
for t;, t,” with t; =t and t; = t,”

" JE
Proof by Induction on the Structure of Expr’s
Theorem. — is deterministic: if t -+t andt—t” then t =t”

Proof. by induction on the structure of t

1. if t=true|false|zero thent =t"=t

2. if t=succt, then t' =succt,’ and t’=succt,”
for t;, t;” with t, >t and t, = t,”
-
by induction t," =t,”

" JEE
Proof by Induction on the Structure of Expr’s
Theorem. — is deterministic: if t =t andt —t’ then t' =t”

Proof. by induction on the structure of t

1. if t=true|false|zero thent =t"=t

2. if t=succt, then t' =succt, and t’=succt,”
for t, t," with t; —t" and t; ;"
~
by induction t,;’ =t,”
Thus, also t' =t".

O
Proof by Induction on the Structure of Expr’s
Theorem. — is deterministic: if t -t andt—t” then t' =t”

Proof. by induction on the structure of t
1. if t=true|false|zero thent' =t"=t

2. if t=predt, then

if t; =succty then t'=t"=t,

because | pred succ nv; — nv; | is only rule applicable.

" JEE
Proof by Induction on the Structure of Expr’s
Theorem. — is deterministic: if t —+t andt —t” then t =t”

Proof. by induction on the structure of t
1. if t=true|false|zero thent =t"=t

2. if t=predt, then

if t;=succty, then t =t" =t

because | pred succ nv; — nv, | is only rule applicable.

otherwise t' = predt; and t”=predt,”
with t; —t;" and t, —t,"

" JE
Proof by Induction on the Structure of Expr’s
Theorem. — is deterministic: if t -+t andt—t” then t =t”

Proof. by induction on the structure of t

1. if t=true|false|zero thent =t"=t
2. if t=predt, then

if t;=succty, then t =t" =t

because | pred succ nv; — nv; | is only rule applicable.

otherwise t' = predt,’ and t’=predt,”
with t; —»t;’ and t; - t,”
-
by induction t," =t,”

Thus, also t' =t".

" JEE
Proof by Induction on the Structure of Expr’s
Theorem. — is deterministic: if t =t andt —t’ then t' =t”

Proof. by induction on the structure of t

1. if t=true|false|zero thent =t"=t
2. if t=ift,thent,elset; then
if t,=true then t' =t"=t,

if t,=false then t' =t"=t,

" JEE
Proof by Induction on the Structure of Expr’s
Theorem. — is deterministic: if t =t andt—t’ then t' =t”

Proof. by induction on the structure of t

1. if t=true|false | zero thent =t"=t
2. if t=ift,thent,elset; then
if t,=true then t'=t"=t,
if t,=false then t' =t"=t,
otherwise t' = if t,’ then t, else t; and
t" =ift,” thent, else t;
with t; = t;" and t; - t,”
N
by induction t,’ =t,”
Thus, also t' =t".

" JEE
Questions:
1. Is — still deterministic if we add the new rule

succ pred nv, = nv,

Which rule must be removed now, to keep a sane semantics?

2. What if redexes can be chosen freely? Is — still determin.?

(i.e., rules can be applied to arbitrary sub-Expr’s)

Is — confluent? Is it terminating?

P t =
it then there is a t such that 3ot
~N

t, t,

O
Summary
- we have defined the syntax of the small language called Expr.
- we have given a semantics to Expr's by means of
an evaluation relation.
- we have proved by induction that for every Expr

there is at most one other Expr that can be derived

by the evaluation relation.

Next Lecture
How to define a small language for defining functions?

- function definition and application: the lambda-calculus

