Type Systems

Lecture 1 Oct. 20th, 2004
Sebastian Maneth
http://lampwww.epfl.ch/teaching/typeSystems/2004

Today

1. Organizational Matters
2. What is this course about?
3. Where do "types" come from?
4. Def. of the small language Expr. Its syntax and semantics.
5. Structural Induction on Expr's

Lectures:	Exercises (lab):
We 13:15-15:00, INM203	We 15:15-17:00, INR 331
Sebastian Maneth	Burak Emir
BC360, 021-69 31226	INR320, 021-69 36867
(last 3 lectures by Martin Odersky)	

To get credits you have to:

$1 / 3\{\rightarrow$ 1-2 written assignments
$1 / 3\{\rightarrow$ one programming assignment
$2 / 3 \rightarrow$ oral examination

1. Organizational Matters

Course Book: Benjamin Pierce, "Types and Programming Languages"

MIT Press, 2002.

We will strictly follow this book!
So: Good to buy it!

Type Systems for Programming Languages
Type Systems for Programming Languages

\rightarrow is (P, T) type sound?
\rightarrow is T decidable?
\rightarrow does \mathbf{C} correctly implement T ?

What you will learn in this course:

- how to define a type system T (to allow for unambiguous implementations)
- how to formally prove that (P, T) is type sound
- how to implement a typechecker for T

A program is SAFE if it does not have untrapped errors.
A PL is SAFE if all its programs are safe.

Type Systems in Programming Languages

What for ??

\rightarrow to prevent execution errors.

Execution Errors

A program is SAFE if it does not have untrapped errors.
A PL is SAFE if all its programs are.
trapped + some "forbidden" untrapped errors := well-behaved

What is a TYPE, in our context?

A type is an upper bound of the range of values that
a program variable can assume during execution.
e.g. if x has type Boolean, then in all runs it should only take one of the values true / false.
$\rightarrow \operatorname{not}(x)$ has a meaning in every run

PLs in which variables can be given nontrivial types are called TYPED languages.

safe/unsafe and typed/untyped

	typed	untyped
safe	ML, Java	LISP
unsafe	C	Assembler

safety \Rightarrow integrity of run-time structures
\Rightarrow enables garbage collection
\Downarrow
saves code size / develop. time
(price: performance)

Type Theory is much older than PLs!

Bertrand Russell (1872-1970)

1901 Russell's Paradox Let $P=\{Q \in$ sets $\mid Q \notin Q\}$ then: $P \in P \Leftrightarrow P \notin P$
\Rightarrow Naive set theory is inconsistent! \Rightarrow MUST eliminate self-referential defs. to make set theory consistent

HOW?

1903 define a hierarchy of types: individuals, sets, sets of set, etc. Any well defined set can only have elements from lower levels.

caveat: of course no one knows if this line will ever be executed! ... but ... it just not SAFE to have it.
should not be allowed to write such a program: it has no meaning!

TYPE SYSTEMS are there to PROTECT YOU from making stupid (obvious) mistakes.

Course Outline

- today: Intro, Arithm. Expressions, Induction, Evaluation \rightarrow LAB1
- next: (untyped) Lambda-Calculus \rightarrow LAB2 untyped λ-evaluator
- 3rd: Simply-Typed Lambda-Calculus \rightarrow LAB3 simply typed w. let/fix
- $4^{\text {rd }}$: Simple Extensions, Subtyping \rightarrow LAB4 subtyping on records
$\cdot 5^{\text {th }}$: Subtyping, Featherweight Java \rightarrow LAB5
-6 ${ }^{\text {th: }}$: Recursive Types I
- $7^{\text {th }}$: Recursive Types II
- $8^{\text {th }}$: Polymorphism I
- $9^{\text {th }}$: Polymorphism II
- $10^{\text {th }}$: Bounded Quantification
- 11-13 ${ }^{\text {th }}$: Scala's Type System (by Martin Odersky)

Syntax and Semantics of PLs

1960 Irons, Syntax-Directed Compiler for ALGOL 60

Syntax and Semantics of PLs

1960 Irons, Syntax-Directed Compiler for ALGOL 60

Syntax and Semantics of PLs

1960 Irons, Syntax-Directed Compiler for ALGOL 60

1966 Younger, O(n^3) Parsing of Context-Free Grammars

Syntax and Semantics of PLs

Until today, EBNF (ext. cf. grammar) is used to describe the syntax of a programming language.

Example: Arithmetic Expressions

$$
\begin{aligned}
& \text { Expr }::=\text { true | false | zero } \\
& \text { Expr }::=\text { if Expr then Expr else Expr } \\
& \text { Expr }::=\text { succ Expr } \\
& \text { Expr }::=\text { pred Expr } \\
& \text { Expr }::=\text { isZero Expr }
\end{aligned}
$$

Derivable Expressions:
\rightarrow pred succ zero
\rightarrow if isZero pred succ zero then zero else true
\rightarrow if zero then true else false

Syntax and Semantics of PLs

Until today, EBNF (ext. cf. grammar) is used to describe the syntax of a programming language.

Example: Arithmetic Expressions
Expr $::=$ true | false | zero
Expr $::=$ if Expr then Expr else Expr
Expr $::=$ succ (Expr)
Expr $::=$ pred (Expr)
Expr $::=$ isZero (Expr)

Derivable Expressions:
\rightarrow pred (succ (zero))
\rightarrow if isZero (pred (succ (zero))) then zero else true
\rightarrow if zero then true else false
semantics??

Syntax and Semantics of PLs

1. Operational Semantics: behavior defined in terms of abstract machines
2. Denotational Semantics: maps programs by an interpretation function into a collection of semantic domains (such as, e.g., numbers, functions, etc.)
3. Axiomatic Semantics: proves properties of a program by applying laws about program behavior (e.g., given that properties P hold before a statement, what properties Q hold after executing it?)

Syntax and Semantics of PLs

Operational Semantics: behavior defined in terms of abstract
machines
2. Denotational Semantics: maps programs by an interpretation function into a collection of semantic domains (such as, e.b., numbers, functions, etc)
3. Axiomatic Semantics: proves properties of a program by applying laws about program behavior (e.g., given that properties P hold before a statement, what properties Q hold after executing it?)

Semantics of Expr

Example: if isZero pred succ pred zero then zero else succ zero
$\frac{t_{1} \rightarrow t_{1}{ }^{\prime}}{\text { if } t_{1} \text { then } t_{2} \text { else } t_{3} \rightarrow}$ if t_{1}, then t_{2} else $t_{3} E$
$\frac{t_{1} \rightarrow t_{1}{ }^{\prime}}{\text { succ } t_{1} \rightarrow \text { succ } t_{1}}$
$\frac{t_{1} \rightarrow t_{1}{ }^{\prime}}{\text { pred } t_{1} \rightarrow \text { pred } t_{1}}{ }^{\prime}$
$\frac{t_{1} \rightarrow t_{1}{ }^{\prime}}{\text { isZero } t_{1} \rightarrow \text { isZero } t_{1}{ }^{\prime}}$
pred zero \rightarrow zero
isZero zero \rightarrow true
pred succ $\mathrm{nv}_{1} \rightarrow \mathrm{nv}_{1}$
isZero succ $\mathrm{nv}_{1} \rightarrow$ false

Semantics of Expr
Example: if isZero pred succ pred zero then zero else succ zero

		$\frac{t_{1} \rightarrow t_{1}{ }^{\prime}}{{\text { if } t_{1} \text { then } t_{2} \text { else } t_{3} \rightarrow}_{\text {if } t_{1}{ }^{\prime} \text { then } t_{2} \text { else } t_{3} E}}$
$\mathrm{t}_{1} \rightarrow \mathrm{t}_{1}{ }^{\prime}$	$\mathrm{t}_{1} \rightarrow \mathrm{t}_{1}{ }^{\prime}$	$\mathrm{t}_{1} \rightarrow \mathrm{t}_{1}{ }^{\prime}$
$\overline{\text { succ } \mathrm{t}_{1} \rightarrow \text { succ } \mathrm{t}_{1}{ }^{\prime}}$	$\overline{\text { pred } \mathrm{t}_{1} \rightarrow \text { pred } \mathrm{t}_{1}{ }^{\prime}}$	$\overline{\text { isZero } \mathrm{t}_{1} \rightarrow \text { isZero } \mathrm{t}_{1}{ }^{\prime}}$
pred zero \rightarrow zero	isZero zero \rightarrow true	
pred succ $\mathrm{nv}_{1} \rightarrow \mathrm{nv}_{1}$	isZero succ $\mathrm{nv}_{1} \rightarrow$ false	

Semantics of Expr

Example: if isZero pred succ pred zero then zero else succ zero $\rightarrow \quad$ if isZero pred succ zero then zero else succ zero

Semantics of Expr

Example: if isZero pred succ pred zero then zero else succ zero $\rightarrow \quad$ if isZero pred succ zero then zero else succ zero

$\mathrm{t}_{1} \rightarrow \mathrm{t}_{1}{ }^{\prime}$	$\mathrm{t}_{1} \rightarrow \mathrm{t}_{1}{ }^{\prime}$	$\frac{t_{1} \rightarrow t_{1}^{\prime}}{\text { if }_{1} \text { then } t_{2} \text { else } t_{3} \rightarrow}$
		$\mathrm{t}_{1} \rightarrow \mathrm{t}_{1}{ }^{\prime}$
$\overline{\text { succ } \mathrm{t}_{1} \rightarrow \text { succ } \mathrm{t}_{1}{ }^{\prime}}$	$\overline{\text { pred } \mathrm{t}_{1} \rightarrow{\text { pred } \mathrm{t}_{1}}^{\prime}}$	isZero $\mathrm{t}_{1} \rightarrow$ isZero $\mathrm{t}^{\prime}{ }^{\prime}$
pred zero \rightarrow zero	isZero zero \rightarrow true	
pred succ $\mathrm{nv}_{1} \rightarrow \mathrm{nv}_{1}$	isZero succ $\mathrm{nv}_{1} \rightarrow \mathrm{f}$	false

Semantics of Expr

Example: if isZero pred succ pred zero then zero else succ zero $\begin{array}{llll}\rightarrow & \begin{array}{l}\text { if isZero pred succ zero } \\ \text { redex }\end{array} \text { then zero else succ zero } \\ \rightarrow & \text { if isZero } & \text { zero } & \text { then zero else succ zero }\end{array}$

Semantics of Expr

Example: if isZero pred succ pred zero then zero else succ zero $\rightarrow \quad$ if isZero pred succ zero then zero else succ zero \rightarrow if isZero zero then zero else succ zero $\frac{t_{1} \rightarrow t_{1}{ }^{\prime}}{\text { if } t_{1} \text { then } t_{2} \text { else } t_{3} \rightarrow}$ if t_{1}, then t_{2} else $t_{3} E$
$\frac{\mathrm{t}_{1} \rightarrow \mathrm{t}_{1}{ }^{\prime}}{\operatorname{succ} \mathrm{t}_{1} \rightarrow \text { succ } \mathrm{t}_{1}{ }^{\prime}} \quad \frac{\mathrm{t}_{1} \rightarrow \mathrm{t}_{1}{ }^{\prime}}{\text { pred } \mathrm{t}_{1} \rightarrow{\text { pred } \mathrm{t}_{1}}^{\prime}} \quad \frac{\mathrm{t}_{1} \rightarrow \mathrm{t}_{1}{ }^{\prime}}{\text { isZero } \mathrm{t}_{1} \rightarrow \text { isZero } \mathrm{t}_{1}{ }^{\prime}}$
pred zero \rightarrow zero \quad isZero zero \rightarrow true
pred succ $n v_{1} \rightarrow \mathrm{nv}_{1} \quad$ isZero succ $n v_{1} \rightarrow$ false

Semantics of Expr
Example: if isZero pred succ pred zero then zero else succ zero

$$
\begin{array}{ll}
\frac{t_{1} \rightarrow t_{1}{ }^{\prime}}{\text { succ } t_{1} \rightarrow{\text { succ } t_{1}{ }^{\prime}}^{t_{1} \rightarrow t_{1}{ }^{\prime}}} \begin{array}{l}
\text { pred } t_{1} \rightarrow{\text { pred } t_{1}}^{\prime}
\end{array} \frac{t_{1} \rightarrow t_{1}{ }^{\prime}}{\text { isZero } t_{1} \rightarrow{\text { isZero } t_{1}{ }^{\prime}}^{\text {pred zero } \rightarrow \text { zero }}} \begin{array}{l}
\text { isZero zero } \rightarrow \text { true } \\
\text { pred succ } n v_{1} \rightarrow n v_{1} \\
\text { isZero succ } n v_{1} \rightarrow \text { false }
\end{array}
\end{array}
$$

Semantics of Expr

Example: if isZero pred succ pred zero then zero else succ zero

\rightarrow	if isZero	d succ	then zero else succ zero then zero else succ zero
\rightarrow	if isZero	zero	
\rightarrow	if	true	then zero else succ zero

$\frac{t_{1} \rightarrow t_{1}{ }^{\prime}}{\operatorname{succ} t_{1} \rightarrow \operatorname{succ} t_{1}{ }^{\prime}}$
pred zero \rightarrow zero

$$
\frac{t_{1} \rightarrow t_{1}^{\prime}}{\text { pred } t_{1} \rightarrow{\text { pred } t_{1}}^{\prime}} \quad \frac{t_{1} \rightarrow t_{1}^{\prime}}{\text { isZero } t_{1} \rightarrow \text { isZero } t_{1}^{\prime}}
$$

$$
\text { if true then } t_{2} \text { else } t_{3} \rightarrow t_{2}
$$

pred succ $n v_{1} \rightarrow n v_{1}$
isZero succ $n v_{1} \rightarrow$ false isZero zero \rightarrow true

Semantics of Expr
Example: if isZero pred succ pred zero then zero else succ zero

\rightarrow	if isZero pred succ zero	then zero else succ zero	
\rightarrow	if isZero	zero	then zero else succ zero
\rightarrow	if	true	then zero else succ zero

$\frac{\mathrm{t}_{1} \rightarrow \mathrm{t}_{1}{ }^{\prime}}{\operatorname{succ} \mathrm{t}_{1} \rightarrow \text { succ } \mathrm{t}_{1}{ }^{\prime}} \quad \frac{\mathrm{t}_{1} \rightarrow \mathrm{t}_{1}{ }^{\prime}}{\text { pred }_{1} \rightarrow{\text { pred } \mathrm{t}_{1}}^{\prime}} \quad \frac{\mathrm{t}_{1} \rightarrow \mathrm{t}_{1}{ }^{\prime}}{\text { isZero } \mathrm{t}_{1} \rightarrow \text { isZero } \mathrm{t}_{1}{ }^{\prime}}$
pred zero \rightarrow zero \quad if true then t_{2} else $t_{3} \rightarrow t_{2}$
pred succ $n v_{1} \rightarrow n v_{1} \quad$ isZero succ $n v_{1} \rightarrow$ false isZero zero \rightarrow true

Induction on the Structure of Expr's

The set of expressions is the smallest set E such that:

1. true, false, zero $\in E$
2. if $t_{1}, t_{2}, t_{3} \in E$, then succ t_{1}, pred t_{1}, isZero $t_{1} \in E$ and if t_{1} then t_{2} else $t_{3} \in E$
\rightarrow we can define / proof things about Expr's by induction!

Example: for any Expr t define its size as

1. if $t=$ true | false | zero then $\operatorname{size}(\mathrm{t})=0$
2. if $t=\operatorname{succ} t_{1} \mid$ pred $t_{1} \mid$ isZero t_{1} then $\operatorname{size}(t)=\operatorname{size}\left(t_{1}\right)+1$ if $t=$ if t_{1} then t_{2} else $t_{3} \underline{\text { then } \operatorname{size}(t)=\operatorname{size}\left(t_{1}\right)+\operatorname{size}\left(t_{2}\right)+\operatorname{size}\left(t_{3}\right)+1, ~}$

Proof by Induction on the Structure of Expr's
Theorem. \rightarrow is deterministic: if $\mathrm{t} \rightarrow \mathrm{t}^{\prime}$ and $\mathrm{t} \rightarrow \mathrm{t}^{\prime \prime}$ then $\mathrm{t}^{\prime}=\mathrm{t}^{\prime \prime}$
Proof. by induction on the structure of t

1. if $\mathrm{t}=$ true | false | zero then $\mathrm{t}^{\prime}=\mathrm{t}^{\prime \prime}=\mathrm{t}$
2. if $\mathrm{t}=\operatorname{succ} \mathrm{t}_{1}$ then $\mathrm{t}^{\prime}=\operatorname{succ} \mathrm{t}_{1}{ }^{\prime}$ and $\mathrm{t}^{\prime \prime}=\operatorname{succ} \mathrm{t}_{1}{ }^{\prime \prime}$ for $t_{1}{ }^{\prime}, t_{1}{ }^{\prime \prime}$ with $t_{1} \rightarrow t_{1}{ }^{\prime}$ and $t_{1} \rightarrow t_{1}{ }^{\prime \prime}$

Proof by Induction on the Structure of Expr's
Theorem. \rightarrow is deterministic: if $\mathrm{t} \rightarrow \mathrm{t}^{\prime}$ and $\mathrm{t} \rightarrow \mathrm{t}^{\prime \prime}$ then $\mathrm{t}^{\prime}=\mathrm{t}^{\prime \prime}$
Proof. by induction on the structure of t

1. if $\mathrm{t}=$ true | false | zero then $\mathrm{t}^{\prime}=\mathrm{t}^{\prime \prime}=\mathrm{t}$
2. if $t=\operatorname{succ} t_{1}$ then
$\frac{t_{1} \rightarrow t_{1}{ }^{\prime}}{\text { succ } t_{1} \rightarrow \operatorname{succ} t_{1}{ }^{\prime}} \quad$ only rule for succ(..)

Proof by Induction on the Structure of Expr's

Theorem. \rightarrow is deterministic: if $\mathrm{t} \rightarrow \mathrm{t}^{\prime}$ and $\mathrm{t} \rightarrow \mathrm{t}^{\prime \prime}$ then $\mathrm{t}^{\prime}=\mathrm{t}^{\prime \prime}$
Proof. by induction on the structure of t

1. if $\mathrm{t}=$ true | false | zero then $\mathrm{t}^{\prime}=\mathrm{t}^{\prime \prime}=\mathrm{t}$
2. if $t=\operatorname{succ} t_{1}$ then $t^{\prime}=\operatorname{succ} t_{1}{ }^{\prime}$ and $t^{\prime \prime}=\operatorname{succ} t_{1}{ }^{\prime \prime}$ for $t_{1}{ }^{\prime}, t_{1}{ }^{\prime \prime}$ with $t_{1} \rightarrow t_{1}{ }^{\prime}$ and $t_{1} \rightarrow t_{1}{ }^{\prime \prime}$

$$
\text { by induction } \mathrm{t}_{1}^{\prime}=\mathrm{t}_{1}{ }^{\prime \prime}
$$

Proof by Induction on the Structure of Expr's

Theorem. \rightarrow is deterministic: if $\mathrm{t} \rightarrow \mathrm{t}^{\prime}$ and $\mathrm{t} \rightarrow \mathrm{t}^{\prime \prime}$ then $\mathrm{t}^{\prime}=\mathrm{t}^{\prime \prime}$
Proof. by induction on the structure of t

1. if $\mathrm{t}=$ true | false | zero then $\mathrm{t}^{\prime}=\mathrm{t}^{\prime \prime}=\mathrm{t}$
2. if $t=$ pred t_{1} then
if $\mathrm{t}_{1}=\operatorname{succ} \mathrm{t}_{11}$ then $\mathrm{t}^{\prime}=\mathrm{t}^{\prime \prime}=\mathrm{t}_{11}$
because pred succ $n v_{1} \rightarrow n v_{1}$ is only rule applicable.

Proof by Induction on the Structure of Expr's

Theorem. \rightarrow is deterministic: if $t \rightarrow t^{\prime}$ and $t \rightarrow t^{\prime \prime}$ then $t^{\prime}=t^{\prime \prime}$

Proof by Induction on the Structure of Expr's

Theorem. \rightarrow is deterministic: if $t \rightarrow t^{\prime}$ and $t \rightarrow t^{\prime \prime}$ then $t^{\prime}=t^{\prime \prime}$
Proof. by induction on the structure of t

1. if $t=$ true | false | zero then $t^{\prime}=t^{\prime \prime}=t$
2. if $t=$ pred $_{1}$ then
if $\mathrm{t}_{1}=\operatorname{succ} \mathrm{t}_{11}$ then $\mathrm{t}^{\prime}=\mathrm{t}^{\prime \prime}=\mathrm{t}_{11}$
because pred succ $n v_{1} \rightarrow n v_{1}$ is only rule applicable.
otherwise $t^{\prime}=$ pred $_{1}{ }^{\prime}$ and $t^{\prime \prime}=$ pred $_{t_{1}}{ }^{\prime \prime}$
with $t_{1} \rightarrow t_{1}{ }^{\prime}$ and $t_{1} \rightarrow t_{1}{ }^{\prime \prime}$
by induction $t_{1}{ }^{\prime}=t_{1}$ "
Thus, also $\mathrm{t}^{\prime}=\mathrm{t}^{\prime \prime}$.

Proof by Induction on the Structure of Expr's

Theorem. \rightarrow is deterministic: if $t \rightarrow t^{\prime}$ and $t \rightarrow t^{\prime \prime}$ then $t^{\prime}=t^{\prime \prime}$
Proof. by induction on the structure of t

1. if $\mathrm{t}=$ true | false | zero then $\mathrm{t}^{\prime}=\mathrm{t}^{\prime \prime}=\mathrm{t}$
2. if $t=$ if t_{1} then t_{2} else t_{3} then
if $\mathrm{t}_{1}=$ true then $\mathrm{t}^{\prime}=\mathrm{t}^{\prime \prime}=\mathrm{t}_{2}$
if $t_{1}=$ false then $t^{\prime}=t^{\prime \prime}=t_{3}$

Proof by Induction on the Structure of Expr's

Theorem. \rightarrow is deterministic: if $\mathrm{t} \rightarrow \mathrm{t}^{\prime}$ and $\mathrm{t} \rightarrow \mathrm{t}^{\prime \prime}$ then $\mathrm{t}^{\prime}=\mathrm{t}^{\prime \prime}$
Proof. by induction on the structure of t

1. if $\mathrm{t}=$ true | false | zero then $\mathrm{t}^{\prime}=\mathrm{t}^{\prime \prime}=\mathrm{t}$
2. if $t=$ if t_{1} then t_{2} else t_{3} then
if $\mathrm{t}_{1}=$ true then $\mathrm{t}^{\prime}=\mathrm{t}^{\prime \prime}=\mathrm{t}_{2}$
if $t_{1}=$ false then $t^{\prime}=t^{\prime \prime}=t_{3}$
otherwise $t^{\prime}=$ if t_{1}^{\prime} then t_{2} else t_{3} and
$t^{\prime \prime}=$ if $t_{1}{ }^{\prime \prime}$ then t_{2} else t_{3}
with $\mathrm{t}_{1} \rightarrow \mathrm{t}_{1}^{\prime}$ and $\mathrm{t}_{1} \rightarrow \mathrm{t}_{1}{ }^{\prime \prime}$
by induction $\mathrm{t}_{1}{ }^{\prime}=\mathrm{t}_{1}{ }^{\prime \prime}$
Thus, also $\mathrm{t}^{\prime}=\mathrm{t}^{\prime \prime}$.

Summary

\rightarrow we have defined the syntax of the small language called Expr.
\rightarrow we have given a semantics to Expr's by means of an evaluation relation.
\rightarrow we have proved by induction that for every Expr there is at most one other Expr that can be derived by the evaluation relation.

Next Lecture
How to define a small language for defining functions? \rightarrow function definition and application: the lambda-calculus

