
Week 13: Featherweight Scala

Martin Odersky

EPFL

1



Two Worlds

Objects and modules have complementary strengths.

• Modules are good at abstraction.

For instance: abstract types in SML signatures.
(Object systems offer only crude visibility control
through modifiers such as private or protected).

• Objects are good at composition.

For instance: Aggregation, recursion, inheritance,
components as first-class values.
(Only the first is supported by standard module
systems).

Composition seems to be more popular than abstraction.

That’s why mainstream languages use objects instead of modules,
even though it comes at a cost in the expressiveness of types.
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Can We Combine Both Worlds?

Idea: Identify

Object =̂ Module

Interface =̂ Signature

Class =̂ Functor

But then: Objects and interfaces need to contain type members.

Furthermore, type members can be either abstract or concrete.
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Should We Combine Both Worlds?

Yes! Benefits are:

1. Better abstraction constructs for components
(e.g. ML’s signatures instead of Java’s interfaces)

2. Family polymorphism is a powerful method of type
specialization by overriding.

Example: Consider a family of types that represent graphs.

• A graph is given by the type of its nodes and the type of its
edges.

• Both types should be refinable later.
• For instance nodes might have labels, or edges might have

weights.
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Here’s a root class for graphs (Scala syntax).

abstract class Graph {
type node <: Node;
type edge <: Edge;

class Node {
val edges : List[edge];
def neighbors : List[node] =

edges.map { e ⇒ if (this == e.pred) e.succ else e.pred }
}
class Edge {

val pred : node;
val succ : node;

}
}

• Nodes and edges are “bare-bone” abstractions in this class.
• However, they refer to each other via two abstract types edge

and node.
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Refining Graphs

A first refinement adds labels to nodes.

abstract class LabelledGraph extends Graph {
type node <: LabelledNode;

class LabelledNode extends Node {
val label : String;

}
}

Edges stay as they are.

In LabelledGraph, if e is an Edge, then e.pred refers to a
LabelledNode or a subtype thereof.

The inherited neighbors method also returns a subtype of
LabelledNode, instead of Node.
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Refining Graphs Further

A second refinement adds weights to edges.

abstract class WeightedGraph extends Graph {
type edge <: WeightedEdge;

class WeightedEdge extends Edge {
val weight : Int;

}
}

We can also combine both refinements as follows:

abstract class WeightedLabelledGraph
extends LabelledGraph with WeightedGraph {}
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A Catch

• Because all graph classes contain abstract members node and
edge, one cannot create directly graph objects, as in
new Graph.

• One needs to bind the abstract members first, as in:
class MyGraph extends WeightedLabelledGraph {

type node = LabelledNode;
type edge = WeightedEdge;

}
val g = new MyGraph;

• One can imagine taking the bound of an abstract type as a
default implementation; then the restriction becomes
unnecessary.

• Most of the above can also be done using parameterized types,
but at a cost of quadratic increase in the size of type variable
bounds ⇒ Bruce, Odersky, Wadler, ECOOP 98.
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Precedents

Has all this been tried?

Yes!

• Programming languages from Aarhus: Beta, more recently
gbeta, Rune.

• Even more recently from Lausanne: Scala.

But what are the type-theoretic foundations?

• Intuition (Igarashi & Pierce): A type member T of an object
referenced by r has the dependent type r.T .

• But aren’t dependent types rather “hairy”?
• Problems: How to find good typing rules, and how to prove

that they are sound.
• Precedent: SML-style module systems, but they’d need to be

upgraded with first-class modules, inheritance and recursion.
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What’s Next

• We develop a type-systematic foundation of objects with
dependent types.

• Objects can have type members.

• Such members may be concrete or abstract.

• They are referenced with expressions p.T where

• p is a path, i.e. an (immutable) identifier followed by zero
or more field selections.

• T is the name of a type in the object referenced by p

• These are called path-dependent types.
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Path-Dependent Types

Question 1: Given

class C { type T; val m : this.T }
val c : C

what is the type of c.m?

Answer: c.T.

Question 2: Given a function

def f(): C = ...

what is the type of f().m? (it can’t be f().T !)

Answer: f().m is not typable.
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Question 3: Given,

class C { type T; val m : this.T }
class D extends C { type T = String }
val d : D

what is the type of d.m?

Answer: d.T or String (they are the same).

Question 4: Given a function

def g(): D = ...

what is the type of g().m?

Answer: String.
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A Theory

We have developed a formal theory based on these intuitions.

Roadmap:

1. Construct FS, a basic calculus of nominal classes and objects.

2. Construct a type system for the calculus.

3. Extend FS to FSG, adding type members of objects.

4. Still to show:

• Is the type system sound wrt the operational semantics?
• Is type checking decidable?
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Terms in FS

There are five forms of terms t in FS.

1. An object- or class-reference x.

2. The special null reference, which refers to no object or class.

3. A selection t.l of a field l in an object denoted by t.

4. An object creation val x = new p ; t

Here, a path p is a name x followed by zero or more field

selections.

5. A class creation class x extends C ; t.
Here, C denotes a class signature (see next slide).
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Definitions in FS

• A class signature C ::= p {x |D d} consists of:

– a list of superclasses p,
– a self-reference x which names the current object,
– a list of member declarations D and definitions d.

• A member declaration D is of the form val l :T .

• A member definition d is of the form val l :T = t.
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Types in FS

There are three forms of types T in FS

1. An instance type p.inst, which contains all instances created
from class p.

2. A singleton type p.type, which contains the object or class
referenced by p.

3. A class type class C, which contains all class values with a
signature equal to C.

Additionally, the null reference forms part of the values of every
type.
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FS Syntax Summary

x, y, z Name
l Label

v, w ::= x | null Value

s, t, u ::= Term
v reference
t.l selection
val x = new p ; t new object
class x extends C ; t class definition

T ::= Type
p.inst class instance
p.type singleton
class C class type

C ::= p {x |D d} Class signature

D ::= val l :T Member declaration

d ::= val l :T = t Member definition

M, N ::= D | d Member

p, q ::= v | p.l Path
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Differences between FS and Scala

1. Different lexical conventions: Two namespaces (for terms and
types) in Scala, unified namespace in FS.

2. The “self” reference of a class is denoted by a
programmer-defined name in FS. Scala uses the reserved word
this.

3. The instance type p.inst is simply written p in Scala (possible
because of disjoint namespaces).

4. Scala does not have class types class C (even though analogous
structures are maintained internally by the Scala compiler).
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Encodings

Even though FS is much smaller than Scala, the majority of Scala’s
constructs can be mapped to it by encodings.

The encodings are quite direct because the essence of Scala’s
language constructs and its evaluation are modeled faithfully in FS.

In particular, there are objects created from classes, and there are
classes built from base-classes using symmetric mixin composition;
object equality is by reference and evaluation is strict.

Here are some of the encodings we will use:

Abbreviated instance types. We allow a path p to be used as
a type, and expand it to p.inst.
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Implicit self references. We allow to leave out the explicit self
reference of a class signature.

A missing self reference is replaced by the predefined name this.

A class signature p{D d} is hence expanded to p {this |D d}.

Value definitions. We introduce value definitions in terms.

t ::= . . . | val x : T = t ; u

Any such value definition is expanded as follows.

class y extends {val out : T = t} ; val x = new y ; [x.out/x]u

Here, y is a fresh class name and out is a predefined label. As
usual, [x.out/x]u denotes the substitution of the term x.out for
every free occurrence of the name x in term u.
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Eliding types. The type in a value definition may be elided, if it
can be computed from the type of its right-hand side. E.g. val l = t

expands to val l :T = t where T is the type of t. Note that this
works only if t does not refer to the label l.

Adding types. We introduce terms annotated with types.

t ::= . . . | t : T

Any such typed term is expanded to val x : T = t ; x where x is a
fresh name.
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Anonymous classes. We permit to merge a class definition with
exactly one superclass and an instantiation of that class. The
merged term is usually called an anonymous class.

t ::= . . . | val x = new p {x | d} ; t .

Any such anonymous class is expanded to a sequence of a class
definition and an object creation as follows.

class y extends p {x | d} ;

val x = new y ;

t : p.inst

Here, y is a fresh name. Note that we have to explicitly annotate
the type p.inst of the final term t. Without such an annotation,
the expansion would not be type-correct as the local class name y

would escape into the type of the whole expansion.
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New objects as terms. We permit new p and new C as terms.
Any occurrence of a term new p other than as a right hand side of
a value definition val x = new p is expanded to val x = new p ; x

where x is a fresh name. Analogously, anonymous class terms
new C are expanded to val x = new C ; x.

Class member definitions. We permit class definitions to be
themselves class members:

d ::= . . . | class l extends C .

Any such class definition is expanded as follows to a value
definition containing a class definition on its right hand side.

val l :class C = (class x extends C ; x) ,

where x is a fresh name.

23



Methods. We introduce method types, method definitions and
declarations, as well as method calls:

T ::= . . . | (T1, . . . , Tn) ⇒ U

d ::= . . . | def l(x1 : T1, . . . , xn : Tn) : U = t

D ::= . . . | def l(x1 : T1, . . . , xn : Tn) : U

t ::= . . . | s(t1, . . . , tn)

A method definition such as the one in the first line above is
expanded to a class definition as follows.

class l extends {
val in1 :T1

. . .

val inn :Tn

val out :U = t

}
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A method type (T1, . . . , Tn) ⇒ U is expanded to a class type as
follows.

class {
val in1 :T1

. . .

val inn :Tn

val out :U = null
}

Here, the abstract value definitions of in1, . . . , inn denote method
parameters, whereas the concrete value definition out denotes the
method result.

The result value as given in the type is null.

Concrete values of the function types can replace this value with an
arbitrary term.
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A method declaration

def l(x1 : T1, . . . , xn : Tn) : U

is expanded as follows to an abstract value definition:

val l : (T1, . . . , Tn) ⇒ U

Finally, a method call s(t1, . . . , tn) is expanded as follows.

val x = s ;
val y = new x {val in1 = t1 . . .val inn = tn} ;
y.out
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Constructors

Class constructors are encoded similarly to methods.

A class definition

class z(y1 : T1, . . . , yn : Tn) extends p {x |D d}

is expanded to

class z extends p {x |
val in1 :T1

. . .

val inn :Tn

D [x.in1/y1, . . . , x.inn/yn] d
}
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Constructor Calls

A class constructor call with arguments such as in

new z(t1, . . . , tn)

is expanded to an anonymous class:

val y1 = t1
. . .

val yn = tn
new z {val in1 = y1, . . . , val inn = yn}

The value definitions for y1, . . . , yn are necessary to maintain the
correct order of evaluation: i.e. class constructor arguments are
evaluated before members of the constructed object.

Superclass constructor calls are treated analogously.
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The Global Environment

A program in FS is simply a term.

Realistic programs use a number of predefined libarary classes.

These classes have to be added to the main program as auxiliary
class definitions.

Because of recursive dependencies between library classes, we
cannot prefix them one by one to the main program in a sequence
of class definitions.

Instead, we group all library classes as members of a common class
global.
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Here’s a program consisting of a main expression t and library
classes c1, . . . , cn with signatures C1, . . . , Cn:

class global {root |
class c1 extends C1

. . .

class cn extends C1

} ;
val root = new global ;
t

References to a library class are then always selections in the global
environment root, e.g. root.ci.
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Differences between FS and FJ

• FS is more general; it has

– nested and local classes,
– value as well as method definitions,
– singleton types,
– class types.

• On the other hand, FJ has type casts – these could be added to
FS without problem.

• FS is more realistic, since it has

– strict evaluation
– null references
– reference equality

• FS is compositional – no global class environment.

• FS relies to a greater degree on encodings.
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Differences between FS and Theory of

Objects

Compared to Cardelli and Abadi’s theory of objects, there are
several important differences:

• There are classes besides objects and classes are first class
terms.

• Objects can have type members
• The reduction relation of the calculus is based on name passing

• This is necessary to maintain well-formedness of
path-dependent types under reduction.

• If we could replace a name (say x) by an arbitrary
expression (say f()), then the legal type x.T would become
the illegal type f().T after reduction.
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Operational Semantics of FS

The operational semantics of FS is given by a big-step evaluation
relation, using judgments of the form

∆ : t ⇓ ∆′ : v In store ∆, term t evaluates to value v, with a result-
ing store ∆′.

There are two auxiliary judgment forms:

∆ ⇓x ∆′ Initialization of object x in store ∆ yields store ∆′.

∆ : y ≺x d In store ∆, the class named y has definitions d, as-
suming x names the self-reference of the class.
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Stores

A store ∆ is a set of store-bindings x 7→δ, which associate names
with store-items.

∆ ::= x 7→δ | Ω Store

δ ::= p(d) | C Store binding

A store-item δ is either

• an object p(d) of class p with members d, or
• a class with signature C.

A special store value Ω denotes an store resulting from a run-time
error leading to a program abort.
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Evaluation Rules

(Val)

∆ : v ⇓ ∆ : v

(EvalClass)

∀n
i=1 ∆ : pi ⇓ ∆ : zi

∆, x 7→z1..n {y |M} : t ⇓ ∆′ : v

∆ : (class x extends p1..n {y |M} ; t) ⇓ ∆′ : v

(EvalSel)

∆ : t ⇓ ∆′ : x l 6∈ L(d′)

x 7→z(d (val l :T = v) d′) ∈ ∆′

∆ : t.l ⇓ ∆′ : v

(EvalNew)

∆ : p ⇓ ∆ : z ∆ : z ≺x d

∆, x 7→z(d) ⇓x ∆′ ∆′ : t ⇓ ∆′′ : v

∆ : (val x = new p ; t) ⇓ ∆′′ : v

Here, L yields the label of a definition. I.e.

L(val l :T ) = l L(val l :T = t) = l
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Auxiliary Evaluation Rules

(Stable-∆)

x 7→z(e) ∈ ∆

∆ ⇓x ∆

(Unfold)

y 7→z1...n {x |D d} ∈ ∆

∀n
i=1 ∆ : zi ≺x di

∆ : y ≺x d1 . . . dn d

(Eval-∆)

x 7→z(e (val l :T = t) d) ∈ ∆

∆ : t ⇓ ∆′ : v

∆′ ] (x 7→z(e (val l : T = v) d)) ⇓x ∆′′

∆ ⇓x ∆′′
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Exceptional Evaluation Rules

The given evaluation rules are not yet sufficient since they do not
talk about exceptional and error situations, like:

1. Selecting a member that has not yet been evaluated,

2. dereferencing null.

3. continuing in some error state
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1. Unevaluated Members

During object initialization, one might select as-yet-unevaluated
members.

Example:

class C { val x = y; val y = 1 }

or:

class C { val x = y; val y = x }

We handle this by returning null as a result of the selection:

(EvalSel’)

∆ : t ⇓ ∆′ : x l 6∈ L(d′) u 6∈ Value

x 7→z(d (val l :T = u) d′) ∈ ∆′

∆ : t.l ⇓ ∆′ : null
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2. Dereferencing Null

What is the result of a selection null.f?

In real life: throw a NullPointerException.

We approximate this by a result null and a store Ω, which signals
“abort”:

(SelNull)

∆ : t ⇓ ∆′ : null

∆ : t.l ⇓ Ω : null
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3. Propagating Error

We still need to define what happens when a store becomes Ω.

Under Ω, the program should abort with a null result.

This is expressed by the following rules:

(New-Null)

∆ : p ⇓ ∆′ : null

∆ : (val x = new p ; t) ⇓ Ω : null

(New-Ω)

∆ : p ⇓ ∆ : z ∆ : z ≺x d

∆, x 7→z(d) ⇓x Ω

∆ : (val x = new p ; t) ⇓ Ω : null

(Cls-Null)

∃n
i=1 ∆ : pi ⇓ ∆′ : null

∆ : (class x extends p1..n {y |M} ; t) ⇓ Ω : null

(Eval-Ω)

x 7→z(e (val l :T = t) d) ∈ ∆

∆ : t ⇓ Ω : v

∆ ⇓x Ω
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Type System

The type system for FS specifies validity of the following main
judgments:

Γ ` t : T In environment Γ term t has type T .

Γ ` T 3 M In environment Γ type T has a member M .

Γ ` T <: T ′ In environment Γ type T conforms to type T ′.

Γ ` T = T ′ In environment Γ types T and T ′ are equal.

Γ ` T wf In environment Γ type T is well formed
(this is an abbreviation for Γ ` T = T ).

The rules make use of a type environments Γ, which is a sequence
of bindings of names to types:

Γ ::= x : T
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Type Assignment Γ ` t : T

(Var)

x :T ∈ Γ

Γ ` x : T

(Null)

Γ ` null : null.type

(Path)

Γ ` p : T

Γ ` p : p.type

(Sel)

Γ ` t : T Γ ` T 3 (val l :U)

Γ ` t.l : U

(Class)

x 6∈ fn(Γ, T ) Γ ` C wf

Γ, x :class C ` t : T

Γ ` (class x extends C ; t) : T

(New)

x 6∈ fn(Γ, T ) Γ ` p.inst :≺x d

Γ, x :p.inst ` t :T

Γ ` (val x = new p ; t) : T
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Membership Γ ` T 3 M

Two rules, depending whether T is a singleton type or not:

(Single-3)

x 6∈ fn(Γ)

Γ ` p.type :≺x M1 M M2

Γ ` p.type 3 [p/x]S(M)

(Other-3)

x 6∈ fn(Γ, M)

Γ, x :T ` x.type 3 M

Γ ` T 3 M

Here, S yields the declaration part (signature) of a definition. I.e.

S(val l :T ) = val l :T S(val l :T = t) = val l :T

Membership rules use an auxiliary “expansion” judgement:

Γ ` T :≺x M In environment Γ, type T has members M , assuming
that x is the self reference of T .
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Expansion Γ ` T :≺x M Γ ` C :≺x M

(Single-:≺)

Γ ` p : T Γ ` T :≺x M

Γ ` p.type :≺x M

(Inst-:≺)

Γ ` p : class C Γ ` C ≺x M

Γ ` p.inst :≺x M

(ClsSig-≺)

∀n
i=1 Γ ` pi.inst :≺x Di di

Γ ` p1...n {x |D d} ≺x (]n
i=1Di) ] (]n

i=1di) ] D d

Rule (ClsSig-≺) implements the membership rules of Scala. The
following rules apply in the order they are given.

• Defined or declared members override inherited members.
• Concrete members override abstract members.
• Members inherited from later base classes override members

inherited from earlier onesa.
a in fact, Scala only prescribes that members from mixin classes override

members inherited from the superclass.

44



Conformance

(Refl-<:)

Γ ` T = U

Γ ` T <: U

(Trans-<:)

Γ ` S <: T Γ ` T <: U

Γ ` S <: U

(Single-<:)

Γ ` p : T

Γ ` p.type <: T

(Null-<:)

Γ ` T wf

Γ ` null.type <: T

(Inst-<:)

Γ ` p : class q1 q q2 {x |M}
Γ ` p.inst <: q.inst

(Defs-<:)

∀k
i=1 ∃

n
j=1 S(Mj) <: S(Ni)

Γ ` M1..n <: N1..k

(Vdcl-<:)

Γ ` T <: U

Γ ` (val L :T ) <: (val L :U)
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Equality

The equality theory of types in FS is (mostly) straightforward.
Most rules simply define a structural equality relation on terms.

There are two rules worth noting:

(Path-=)

Γ ` p : q.type

Γ ` p = q

(Vdef-=)

Γ ` T = T ′ Γ ` t : U Γ ` t′ : U ′

Γ ` U <: T Γ ` U ′ <: T ′

Γ ` (val l :T = t) = (val l :T ′ = t′)

Rule (Path-=) says that if p’s declared type is q.type, then p and q

are equal.

Rule (Vdef-=) says that two value definitions are equal if their
names and declared types are equal; right hand sides don’t matter.
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Well-formedness

The well-formedness judgment Γ ` X wf decides whether entity X

is well-formed.

The most complicated rule is the well-formedness rule for
class-signatures:

(ClsSig-=)

x, y 6∈ fn(Γ) z 6∈ fn(Γ, x, y)

C
def
≡ p {x |M} Γ′ def

≡ Γ, z :class C, x :z.inst

Γ ` p wf Γ ` C ≺x N Γ′ ` N wf

∀n
i=1 Γ ` pi.inst :≺x Ni Γ′ ` N <: Ni

∀k
i,j=1 i 6= j ⇒ L(Mi) 6= L(Mj)

Γ ` p1..n {x |M1..k}wf
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The Generic Calculus

So far, we cannot yet express (universal) polymorphism or abstract
types.

To do this, we introduce type members in objects.

Syntax extension:

L Type label

T ::= . . . | T#L type selection

D ::= . . . | type L<:T type declaration

d ::= . . . | type L=T type definition

The path-dependent type p.T is then syntactic sugar for p.type#T .

Type parameters can be encoded as abstract type members, similar
to the way value parameters are encoded as abstract value
members.
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Evaluation

Evaluation rules are completely unchanged.

This means: type members are static; they do not form part in
evaluation.
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Expansion and Conformance

There’s one new rule for member expansion, and there are three
new rules for conformance:
(Tsel-:≺)

Γ ` T 3 (type L≤:U)

Γ ` U :≺x M

Γ ` T#L :≺x M

(Tsel-<:)

Γ ` T 3 (type L<:U)

Γ ` T#L <: U

(Tdcl-<:)

Γ ` T <: U

Γ ` (type L≤:T ) <: (type L<:U)

(Tdef-<:)

Γ ` T = U

Γ ` (type L=T ) <: (type L=U)
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Meta-Theory

Two results as yet to be shown:

Conjecture 1: Type soundness: If Γ ` t : T and Γ ` ∆ and
∆ : t ⇓ ∆′ : v then

(1) Γ ` v : T

(2) ∃Γ′. Γ,Γ′ ` ∆′

Conjecture 2: Decidability: There is an algorithm to decide
whether Γ ` t : T
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Summary

• We have introduced Featherweight Scala, a simple calculus that
expressed the essence of Scala.

• The calculus consists of a operational semantics and typing
rules.

• Makes use of Duality: Functional constructions can be encoded
in object-oriented.
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