TMC Session 8 @ 12/12/2001

U. Nestmann

EPFL-LAMP

n-ary Semaphores [Mil99: Ex. 5.14]

$$S^{(1)} \stackrel{\text{def}}{=} p.S_1^{(1)}$$
 $S_1^{(2)} \stackrel{\text{def}}{=} p.S_1^{(2)}$ $S_1^{(2)} \stackrel{\text{def}}{=} p.S_2^{(2)} + v.S^{(2)}$ $S_1^{(1)} \stackrel{\text{def}}{=} v.S_1^{(2)}$ $S_2^{(2)} \stackrel{\text{def}}{=} v.S_1^{(2)}$

Proposition: $S^{(1)} | S^{(1)} \sim S^{(2)}$.

Proof?

$$\mathcal{R} \stackrel{\text{def}}{=} \left\{ (S^{(1)}|S^{(1)}, S^{(2)}), (S_1^{(1)}|S_0^{(1)}, S_1^{(2)}), (S_1^{(1)}|S_1^{(1)}, S_2^{(2)}), (S_0^{(1)}|S_1^{(1)}, S_1^{(2)}) \right\}$$

Bisimulation up to \equiv

Definition:

A binary relation S over P is a **strong** simulation up to \equiv if, whenever P S Q:

if $p \stackrel{\mu}{\longrightarrow} p'$, then there is $q' \in Q$ such that $q \stackrel{\mu}{\longrightarrow} q'$ and $p' \equiv \mathcal{S} \equiv q'$.

Strong bisimulation up to $\equiv \dots$

Proposition:

Let \mathcal{S} be a strong simulation up to \equiv . If $P \mathcal{S} Q$, then $P \sim Q$.

Bisimulation up to \equiv

Check!

$$\mathcal{R}_{1} \stackrel{\text{def}}{=} \left\{ (S^{(1)}|S^{(1)}, S^{(2)}), \\ (S_{1}^{(1)}|S_{1}^{(1)}, S_{2}^{(2)}), (S_{0}^{(1)}|S_{1}^{(1)}, S_{1}^{(2)}) \right\}$$

and

$$\mathcal{R}_{2} \stackrel{\text{def}}{=} \left\{ (S^{(1)}|S^{(1)}, S^{(2)}), (S_{1}^{(1)}|S_{0}^{(1)}, S_{1}^{(2)}), (S_{1}^{(1)}|S_{1}^{(1)}, S_{2}^{(2)}) \right\}$$

are both strong bisimulations up to \equiv .

Towards Observation Equivalence

Different internal behavior should not count!

Definition: (observations / weak actions)

1.
$$\Rightarrow \stackrel{\text{def}}{=} \rightarrow^*$$

2.
$$\stackrel{\lambda}{\Longrightarrow} \stackrel{\text{def}}{=} \Longrightarrow \stackrel{\lambda}{\Longrightarrow} \Longrightarrow$$

$$\stackrel{\tau}{\Longrightarrow} \stackrel{\text{def}}{=} \stackrel{+}{\longrightarrow} =$$

$$\Rightarrow \stackrel{\tau}{\longrightarrow} \Rightarrow$$

3. Let
$$e = \lambda_1 \cdots \lambda_n$$
. (If $n = 0$ then $e = \epsilon$.)

$$\bullet \implies \stackrel{\epsilon}{\Longrightarrow} \stackrel{\text{def}}{\Longrightarrow} \Longrightarrow$$

$$\stackrel{\lambda_1 \cdots \lambda_n}{\Longrightarrow} \stackrel{\text{def}}{\Longrightarrow} \cdots \stackrel{\lambda_n}{\Longrightarrow}$$

Weak Simulation

Definition:

Let \mathcal{S} be a binary relation over \mathcal{P} . \mathcal{S} is a weak simulation if, whenever $P \mathcal{S} Q$, if $P \stackrel{e}{\Rightarrow} P'$ then there is $Q' \in \mathcal{P}$ such that $Q \stackrel{e}{\Rightarrow} Q'$ and $P' \mathcal{S} Q'$.

Q weakly simulates P if there is a weak simulation S with P S Q.

Example:

Prove that $Q = \tau.a.\tau.b.Q$ simulates P = a.b.P.

Weak Simulation (II)

Proposition:

S is a weak simulation **iff**, whenever P S Q,

- if $P \to P'$ then there is $Q' \in \mathcal{P}$ such that $Q \Rightarrow Q'$ and $P' \in \mathcal{S}(Q')$.
- if $P \xrightarrow{\lambda} P'$ then there is $Q' \in \mathcal{P}$ such that $Q \xrightarrow{\lambda} Q'$ and $P' \mathcal{S} Q'$.

Weak Bisimulation

Definition:

... (* straightforward / no surprise *)

P and Q are weakly bisimilar, weakly equivalent, or observation equivalent, written $P \approx Q$, if there exists a weak bisimulation $\mathcal B$ with $P \ \mathcal B \ Q$.

Proposition:

- 1. \approx is an equivalence relation.
- 2. \approx is itself a weak bisimulation.

Strong vs Weak

- 1. every strong simulation is also a weak one
- 2. $P \sim Q$ implies $P \approx Q$
- 3. see examples later on . . .

Weak simulation up to \sim

Definition:

 ${\cal S}$ is a weak simulation up to \sim if, whenever $P {\cal S} Q$,

- if $P \to P'$ then there is $Q' \in \mathcal{P}$ such that $Q \Rightarrow Q'$ and $P' \sim \mathcal{S} \sim Q'$.
- if $P \xrightarrow{\lambda} P'$ then there is $Q' \in \mathcal{P}$ such that $Q \xrightarrow{\lambda} Q'$ and $P' \sim \mathcal{S} \sim Q'$.

 ${\cal S}$ is a weak bisimulation up to \sim if its converse also has this property.

Weak simulation up to \sim (II)

Proposition:

If \mathcal{B} is a weak bisimulation up to \sim and $P \mathcal{B} Q$, then $P \approx Q$.

Proof?

Example

Prove that $(\nu b)(A|B) \approx E$.

$$A|B \xrightarrow{\overline{c}} A'|B'$$

$$E \xrightarrow{\overline{c}} E' \xrightarrow{\overline{c}} E''$$

$$A|B'$$

Some Inequivalences

$$P = a + b$$

$$Q = a + \tau.b$$

$$P = a + b$$
 $Q = a + \tau \cdot b$ $R = \tau \cdot a + \tau \cdot b$

Some Equivalences

$$\tau a \approx a$$

$$\tau.a \approx a$$
 $a + \tau.a \approx \tau.a$

$$a.c + a.(b + \tau.c)$$

 $\approx a.(b + \tau.c)$

Some Equations

Theorem:

Let P be any process.

Let N, M any summations. Then:

1.
$$P \approx \tau . P$$

2.
$$M + N + \tau . N \approx M + \tau . N$$

3.
$$M + \alpha P + \alpha (\tau P + N) \approx M + \alpha (\tau P + N)$$

Congruence Properties

Proposition:

Weak bisimilarity is a process congruence, i.e.,

Example:

- Observe $b \approx \tau.b$!
- Check $a + b \stackrel{?}{\approx} a + \tau.b$!

Unique Solution of Equations

Theorem:

Let $\vec{X} = X_1, X_2, \dots$ be a (possibly infinite) sequence of process variables. In the equations

$$X_1 \approx \alpha_{11}.X_{k(11)} + \cdots + \alpha_{1n_1}.X_{k(1n_1)}$$

$$X_2 \approx \alpha_{21}.X_{k(11)} + \cdots + \alpha_{2n_1}.X_{k(2n_1)}$$

$$\cdots \approx \cdots$$

assume that $\alpha_{ij} \neq \tau$. Then, up to \approx , there is a unique sequence P_1, P_2, \ldots of processes which satisfies the equations.