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n-ary Semaphores|[M1199: Ex. 5.14 |
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Bisimulation up to =

Definition:
A binary relation S over P Is a strong
simulation up to = if, whenever P S Q:

If p N p/, then thereis ¢’ € ()
such that ¢ A, ¢ and p =S5=¢'.

Strong bisimulationup to = ...

Proposition:
_et § be a strong simulation up to =.
fPSQ,then P~ Q.




Bisimulation up to =

Check!

R, & (55 g2y
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are both strong bisimulations up to =.




Towar ds Observation Equivalence

Different internal behavior should not count !

Definition: ( observations / weak actions )

1. = e
A
2 . )\> def AN
7 def + T
6 = = — — — —> —>
3. Lete=X---\,. (Ifn=0thene =¢.)
. S def
)\1'”)\n\ def )\1\ )\n
o S ... s




Weak Simulation

Definition:

Let S be a binary relation over P.

S I1s a weak simulation if, whenever P S (),
if P == P’ then thereis Q' € P

such that Q) == @' and P’ S Q)'.

() weakly simulates P
If there I1s a weak simulation S with P § Q).

Example:
Prove that () = 7.a.7.b.() simulates P = a.b.P.




Weak Simulation (I1)

Proposition:
S Is a weak simulation iff, whenever P S 0,

- if P — P’ thenthereis Q' ¢ P
suchthat ) = Q" and P’ S @'.

. A .
« if P — P'thenthereis Q' € P
such that ¢ =N Q) and P’ S Q'.




Weak Bissmulation

Definition:
... (* straightforward / no surprise *)

P and () are weakly bisimilar,

weakly equivalent, or observation equivalent,
written P ~ (),

If there exists a weak bisimulation B with P 5 ().

Proposition:

1. ~ Is an equivalence relation.
2. =~ Is Itself a weak bisimulation.




Strong vs Weak

1. every strong simulation is also a weak one
2. P~ Qimplies P~ ()
3. see examples lateron ...
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Weak ssmulation up to ~

Definition:
S I1s a weak simulation up to ~
If, whenever P S @),

- if P — P’ thenthereis Q' ¢ P
such that ) = @' and P’ ~S~ ('.

- if P -5 P’ then thereis Q' € P
such that () N Q)" and P' ~S~ ().

S I1s a weak bisimulation up to ~
If Its converse also has this property.




Weak ssmulation up to ~ (1)

Proposition:

If B I1s a weak bisimulation up to ~
and P B (), then P = ().

Proof ?




def
A —

a. A" (=a.b.A)

o - E ¥ oF
A/ — bA def
def E' = aFR'+¢cE
B € bB (=beB) g
def E — EE/
B" = &B
Prove that (vb)(A|B) ~ F.
A/’B B E—>a E/—>a E
Pt ~_ c c
AIBT 4 A'|B'
~ 2~
A|B’




Some | nequivalences
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Some Equivalences

[ ® ®

| o, \r a,” \a

g N "N

° 0 ° lo °

| P AN

0 0 0 0 I
0

T.0 R G a-+T.0axT.a a.c+ a.(b+ 1.c)




Some Equations

Theorem:
Let P be any process.
Let N, M any summations. Then:

1. P~ T1.P
2. M +N+7N~M-+71.N
3. M+aP+a(rP+N)~M+a(r.P+ N)




Congruence Properties

Proposition:
Weak bisimilarity Is a process congruence, i.e.,

Example:

« Observe b~ 1.0

?
» Checka+b~a+ 7.0




Unique Solution of Equations

Theorem:

Let X = X, X5, ... be a (possibly infinite)
sequence of process variables. In the equations

X1
X

&

@11°Xk(11) Tttt T @1n1-Xk(1n1)

2

Qo1 Xp(11) - - -+ Qany - Xg(2n))

assume that o;; # 7. Then, up to =, there Is a

unique sequence Py, P, ... of processes which
satisfies the equations.
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