TMC Session 7 @ 05/12/2001

U. Nestmann

EPFL-LAMP

Standard Form

Theorem: Every process is structurally congruent to a standard form.

Proof?

- make sure that you properly understand the definition of standard form
- "induction" on the structure of process terms
- algebraic reformulation of terms, using any number of ≡-laws

Natural vs. Structural Induction

Prove that Prop(n) is true for $n \in \mathbb{N}$

- 1. Prove Prop(0).
- 2. Prove that Prop(n + 1) is true under the condition that Prop(n) is true.

Prove that Prop(P) is true for $P \in \mathcal{P}$

- 1. Prove Prop(0).
- 2.(a) Prove that $Prop(\mu.P)$ is true under the condition that Prop(P) is true.
 - (b) Prove that $Prop(P|Q) \dots$

Example: Lottery [Mil99, § 4.5]

Lotspec
$$\stackrel{\text{def}}{=} \tau.b_1.$$
Lotspec $+ \cdots + \tau.b_n.$ Lotspec $A(a,b,c) \stackrel{\text{def}}{=} \overline{a}.C$ $A_i(\vec{a},\vec{b}) \stackrel{\text{def}}{=} A\langle a_i,b_i,a_{i+1} \rangle$ $B(a,b,c) \stackrel{\text{def}}{=} b.C$ $B_i(\vec{a},\vec{b}) \stackrel{\text{def}}{=} B\langle a_i,b_i,a_{i+1} \rangle$ $C(a,b,c) \stackrel{\text{def}}{=} \tau.B + c.A$ $C_i(\vec{a},\vec{b}) \stackrel{\text{def}}{=} C\langle a_i,b_i,a_{i+1} \rangle$ $L_1 \stackrel{\text{def}}{=} (\boldsymbol{\nu}a_1a_2a_3) (C_1 \mid A_2 \mid A_3)$ $L_2 \stackrel{\text{def}}{=} (\boldsymbol{\nu}a_1a_2a_3) (A_1 \mid C_2 \mid A_3)$ $L_3 \stackrel{\text{def}}{=} (\boldsymbol{\nu}a_1a_2a_3) (A_1 \mid A_2 \mid C_3)$

What is $fn(L_i)$? Draw the transition graph of L_i !

Stability

Definition:

A process P is called **stable**, if there is no P' with $P \rightarrow P'$ (abbreviated: $P \not\rightarrow$).

But, reactions are only one half of the story . . .

Towards Transition Rules

$$A \stackrel{\text{def}}{=} a.A'$$

$$A' \stackrel{\text{def}}{=} \overline{b}.A$$

$$B \stackrel{\text{def}}{=} b.B'$$

$$B' \stackrel{\text{def}}{=} \overline{c}.B$$

What are the transitions of A|B?

$\mathsf{LTS}\left(\mathcal{P},\mathcal{T} ight)$ (I)

Definition: The LTS $(\mathcal{P}, \mathcal{T})$ of concurrent processes over $\mathcal{A} \cup \{\tau\}$ has \mathcal{P} as states, and its transitions \mathcal{T} are generated by the following rules:

PRE:
$$\mu.P \stackrel{\mu}{\longrightarrow} P$$

$$\text{SUM}_1 \colon \frac{M_1 \stackrel{\mu}{\longrightarrow} M_1'}{M_1 + M_2 \stackrel{\mu}{\longrightarrow} M_1'} \qquad \text{SUM}_2 \colon \frac{M_2 \stackrel{\mu}{\longrightarrow} M_2'}{M_1 + M_2 \stackrel{\mu}{\longrightarrow} M_2'}$$

LTS over $(\mathcal{P}, \mathcal{T})$ (II)

$$\operatorname{PAR}_1: \frac{P_1 \stackrel{\mu}{\longrightarrow} P_1'}{P_1|P_2 \stackrel{\mu}{\longrightarrow} P_1'|P_2} \qquad \operatorname{PAR}_2: \frac{P_2 \stackrel{\mu}{\longrightarrow} P_2'}{P_1|P_2 \stackrel{\mu}{\longrightarrow} P_1|P_2'}$$

REACT:
$$\frac{P \stackrel{\lambda}{\longrightarrow} P' \qquad Q \stackrel{\overline{\lambda}}{\longrightarrow} Q'}{P|Q \stackrel{\tau}{\longrightarrow} P'|Q'}$$

RES:
$$\frac{P \xrightarrow{\mu} P'}{(\boldsymbol{\nu}a) \, P \xrightarrow{\mu} (\boldsymbol{\nu}a) \, P'} \text{ if } \mu \not \in \{a, \overline{a}\}$$

LTS over $(\mathcal{P}, \mathcal{T})$ (IIII)

DEF:
$$\frac{\{\vec{b}/\!\!\!/\!\!\!/ a\}P_A \stackrel{\mu}{\longrightarrow} P'}{A\langle\,\vec{b}\,\rangle \stackrel{\mu}{\longrightarrow} P_A} \text{ if } A(\,\vec{a}\,) \stackrel{\text{def}}{=} P_A$$

ALPHA:
$$\frac{Q \stackrel{\mu}{\longrightarrow} Q'}{P \stackrel{\mu}{\longrightarrow} P'} \text{ if } P =_{\alpha} Q \text{ and } P' =_{\alpha} Q'$$

Properties

Proposition: If $P \stackrel{\mu}{\longrightarrow} P'$ and $P \equiv Q$, then there is Q' such that $Q \stackrel{\mu}{\longrightarrow} Q'$ and $P' \equiv Q'$.

Proposition: Let $P \xrightarrow{\lambda} P'$. Then

$$P \equiv (\boldsymbol{\nu}\vec{z}) (\lambda.Q + M \mid R)$$

$$P' \equiv (\boldsymbol{\nu}\vec{z}) (Q \mid R)$$

for $\{\lambda, \overline{\lambda}\} \cap \vec{z} = \emptyset$.

Theorem: $P \to P'$ iff $P \stackrel{\tau}{\longrightarrow} \equiv P'$.

Transition Induction (Depth of Infer.)

Prove
$$Prop(t)$$
 for $t = (P, \alpha, P') \in \mathcal{T}$

1. Prove *Prop*(concl) for all axioms

AXIOM: CONC

2. Prove that Prop(concl) is true under the condition that $Prop(prem_i)$ is true for all premisses, and repeat this for all rules

RULE:
$$\frac{\mathsf{prem}_1}{\mathsf{concl}}$$
 ... $\frac{\mathsf{prem}_n}{\mathsf{concl}}$

Properties

Proposition:

- 1. Given P, there are finitely many transitions $P \stackrel{\mu}{\longrightarrow} P'$.
- 2. If $P \xrightarrow{\mu} P'$, then $\operatorname{fn}(P', \mu) \subseteq \operatorname{fn}(P')$.
- 3. If $P \xrightarrow{\mu} P'$ and σ any substitution, then $\sigma P \xrightarrow{\sigma \mu} \sigma P'$.

Proof?

Lottery

- complete the transition graph!
- verify the transitions formally, i.e., using the transition rules.

Bisimilarity on Concurrent Processes

Definition: (* ... learned by heart ... *)

Theorem:

- 1. Structural congruence is a bisimulation.
- 2. If $P \equiv Q$, then $P \sim Q$.

Homework:

- Do the semaphore example [Milner, 5.14–16].
- Check the proofs of [Milner, §5].

"Algebraic" Properties

- $a \mid b \sim a.b + b.a$
- For all $P \in \mathcal{P}$, $P \sim \sum \{\beta.Q \mid P \stackrel{\beta}{\longrightarrow} Q\}$.
- For all $n \geq 0$ and $P_1, \ldots, P_n \in \mathcal{P}$:

$$\begin{cases}
\sum \{ \beta.(P_1|\cdots|P'_i|\cdots|P_n) \\
|1 \le i \le n, P_i \xrightarrow{\beta} P'_i \} \\
+ \sum \{ \tau.(P_1|\cdots|P'_i|\cdots|P'_j|\cdots|P_n) \\
|1 \le i < j \le n, P_i \xrightarrow{\lambda} P'_i, P_j \xrightarrow{\overline{\lambda}} P'_j \}
\end{cases}$$

"Algebraic" Properties (II)

For all
$$n \geq 0$$
, $P_1, \ldots, P_n \in \mathcal{P}$, and \vec{a} : $(\boldsymbol{\nu}\vec{a})$ $(P_1|\cdots|P_n) \sim \begin{cases} \sum \{\beta.(\boldsymbol{\nu}\vec{a}) (P_1|\cdots|P_i'|\cdots|P_n) \\ |1 \leq i \leq n, P_i \xrightarrow{\beta} P_i', \text{ and } \beta, \overline{\beta} \not\in \vec{a} \} \\ + \sum \{\tau.(\boldsymbol{\nu}\vec{a}) (P_1|\cdots|P_i'|\cdots|P_j'|\cdots|P_n) \\ |1 \leq i < j \leq n, P_i \xrightarrow{\lambda} P_i', P_j \xrightarrow{\overline{\lambda}} P_j' \end{cases}$

Now, recall standard forms! Expansion **Law**!

"Algebraic" Properties (III)

- $\beta.P + \beta.P + M \sim \beta.P + M$
- $(\boldsymbol{\nu}a) a.P \sim \mathbf{0}$
- $(\boldsymbol{\nu}a)\,\overline{a}.P\sim\mathbf{0}$
- $(\boldsymbol{\nu}c)(a.c.P \mid b.\overline{c}.Q) \sim (\boldsymbol{\nu}c)(a.c.Q \mid b.\overline{c}.P)$
- •

Congruence Properties

Proposition:

Bisimilarity is a process congruence, i.e., ...