TMC Session 6 @ 28/11/2001

U. Nestmann

EPFL-LAMP

Scope extension . . .

What is the difference between P and P'?

$$P = (\boldsymbol{\nu}a) (a.Q_1 + b.Q_2 | \overline{a}.\mathbf{0}) | \overline{b}.R_1 + \overline{a}.R_2$$

 $P' = (\boldsymbol{\nu}a') (a'.Q_1 + b.Q_2 | \overline{a}'.\mathbf{0} | \overline{b}.R_1 + \overline{a}.R_2)$

Process Contexts

<u>Definition</u>: A process context $C[\cdot]$ is (precisely) defined by the following syntax:

$$C[\cdot] ::= [\cdot] | \alpha.C[\cdot] + M | M + \alpha.C[\cdot] | (\nu a) C[\cdot] | C[\cdot]|P | P|C[\cdot]$$

The elementary contexts are $\alpha . [\cdot] + M, M + \alpha . [\cdot], (\nu a) [\cdot], [\cdot] | P, P | [\cdot].$

C[Q] denotes the result of filling the hole $[\cdot]$ of $C[\cdot]$ with process Q.

Process congruence

<u>Definition</u>: (Process congruence) Let \cong be an equivalence relation over \mathcal{P} . Then \cong is said to be a process congruence, if it is preserved by all elementary contexts; i.e., if $P \cong Q$, then

Process congruence (II)

Proposition:

An arbitrary equivalence relation \cong is a process congruence if and only if, for *all* contexts $C[\cdot]$, $P \cong Q$ implies $C[P] \cong C[Q]$.

Note:

For proving that an equivalence relation is a congruence, the elementary contexts suffice.

Structural Congruence

<u>Definition</u>: Structural congruence, written \equiv , is the (smallest) process congruence over \mathcal{P} determined by the following equations.

- **1.** =_α
- 2. commutative monoid laws for $(\mathcal{P}, +, \mathbf{0})$
- 3. commutative monoid laws for $(\mathcal{P}, |, \mathbf{0})$

4.
$$(\boldsymbol{\nu}a) (P|Q) \equiv P|(\boldsymbol{\nu}a) Q$$
, if $a \notin \operatorname{fn}(P)$
 $(\boldsymbol{\nu}a) \mathbf{0} \equiv \mathbf{0}, (\boldsymbol{\nu}ab) P \equiv (\boldsymbol{\nu}ba) P$

5.
$$A\langle \vec{b} \rangle \equiv \{\vec{b}/\vec{a}\}M_A$$
, if $A(\vec{a}) \stackrel{\text{def}}{=} M_A$

Structural Congruence (II)

reflexive-symmetric-transitive context closure (of a set of equations)

$$\frac{P = Q}{P = P} \qquad \frac{P = Q}{Q = P} \qquad \frac{P = Q}{P = R}$$

 $\frac{P=Q}{C[P]=C[Q]} \text{ for arbitrary "process context" } C[\cdot]$

allows **equational reasoning**, i.e. any number of applications, in either direction, to any subterm

It is Easy to see that . . .

If
$$P \equiv Q$$
, then $fn(P) = fn(Q)$.

•

Standard Form

Definition:

A process expression $(\nu \vec{a}) (M_1 | \cdots | M_n)$, where each M_i is a non-empty sum, is said to be in **standard form**. If n = 0 then $M_1 | \cdots | M_n$ means **0**. If \vec{a} is empty then there is no restriction.

Example:

Let $P = (\nu a) (A\langle a \rangle | (\nu a) a.0)$ with $A(a) \stackrel{\text{def}}{=} a.(\nu a) a.0$ Is there a standard form \widehat{P} with $\widehat{P} \equiv P$?

Theorem: Every process is structurally congruent to a standard form.

Proof ? Homework !

Example: [Milner 99: Exercise 4.10]

If $(\nu a) P \equiv P$, then $a \notin \operatorname{fn}(P)$.

In other words, in any standard from, we can ensure that the outermost restriction only involves free names in some M_i .

Linking

Let *P* be a process with *ports l* (left) and *r* (right), then we may *link* two copies of *P* through: $P \cap Q \stackrel{\text{def}}{=} (\boldsymbol{\nu} m) \left(\{ \frac{m}{r} \} P \mid \{ \frac{m}{l} \} Q \right)$

Although often omitted due to laziness, is is clearer to make explicit the parameters of P:

$$P\langle l, r \rangle \cap Q\langle l, r \rangle$$

$$\stackrel{\text{def}}{=} (\boldsymbol{\nu}m) \left(\{ m/r \} P\langle l, r \rangle \mid \{ m/l \} Q\langle l, r \rangle \right)$$

$$\equiv (\boldsymbol{\nu}m) \left(P\langle l, m \rangle \mid Q\langle m, r \rangle \right)$$

Prove that:

•

$P^{\frown}(Q^{\frown}R) \equiv (P^{\frown}Q)^{\frown}R$

Reaction

<u>Definition</u>: The reaction relation \rightarrow over \mathcal{P} is generated by the following rules:

TAU: $\tau.P + M \to P$ react: $a.P + M | \overline{a}.Q + N \to P | Q$

Struct:
$$\frac{P \to P'}{Q \to Q'}$$
 if $P \equiv Q$ and $P' \equiv Q'$

•

Compare to sequential process expressions !

One "sees" the reactions almost directly when transforming a concurrent process expression into a standard form !

However, one is not obliged to do so :-)

Example Reactions

Recall:

$$P = (\boldsymbol{\nu}a) (a.Q_1 + b.Q_2 | \overline{a}.\mathbf{0}) | \overline{b}.R_1 + \overline{a}.R_2$$

$$P \rightarrow (\boldsymbol{\nu}a) (Q_1 | \mathbf{0}) | \overline{b}.R_1 + \overline{a}.R_2$$

$$P \rightarrow (\boldsymbol{\nu}a) (Q_2 | \overline{a}.\mathbf{0}) | R_1$$

Use the reaction rules to derive the above reactions formally.