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Scope extension . . .

What is the difference between P and P ′ ?

P = (νa) ( a.Q1 + b.Q2 | a.0 ) | b.R1 + a.R2

P ′ = (νa′) ( a′.Q1 + b.Q2 | a
′.0 | b.R1 + a.R2 )
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Process Contexts

Definition: A process context C[·] is (precisely)
defined by the following syntax:

C[·] ::= [·]
∣∣ α.C[·] + M

∣∣ M + α.C[·]∣∣ (νa) C[·]
∣∣ C[·]|P

∣∣ P |C[·]

The elementary contexts are
α.[·] + M , M + α.[·], (νa) [·], [·]|P , P |[·].

C[Q] denotes the result of filling the hole [·] of
C[·] with process Q.
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Process congruence

Definition: (Process congruence)
Let ∼= be an equivalence relation over P.
Then ∼= is said to be a process congruence,
if it is preserved by all elementary contexts;
i.e., if P ∼= Q, then

α.P + M ∼= α.Q + M

M + α.P ∼= M + α.Q

P |R ∼= Q|R

R|P ∼= R|Q

(νa) P ∼= (νa) Q .
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Process congruence (II)

Proposition:
An arbitrary equivalence relation ∼= is a process
congruence if and only if, for all contexts C[·],
P ∼= Q implies C[P ] ∼= C[Q].

Note:
For proving that an equivalence relation is a
congruence, the elementary contexts suffice.
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Structural Congruence

Definition: Structural congruence, written ≡, is
the (smallest) process congruence over P
determined by the following equations.

1. =α

2. commutative monoid laws for (P, +,0)

3. commutative monoid laws for (P, |,0)

4. (νa) (P |Q) ≡ P |(νa) Q, if a 6∈ fn(P )
(νa)0 ≡ 0, (νab) P ≡ (νba) P

5. A〈~b 〉 ≡ {
~b/~a}MA, if A(~a )

def
= MA.
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Structural Congruence (II)

reflexive-symmetric-transitive context closure
(of a set of equations)

P = P

P = Q

Q = P

P = Q Q = R

P = R

P = Q

C[P ] = C[Q]
FOR ARBITRARY “PROCESS CONTEXT” C[·]

allows equational reasoning, i.e. any number of
applications, in either direction, to any subterm
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It is Easy to see that . . .

If P ≡ Q, then fn(P ) = fn(Q).
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Standard Form

Definition:
A process expression (ν~a) ( M1| · · · |Mn ),
where each Mi is a non-empty sum,
is said to be in standard form.
If n = 0 then M1| · · · |Mn means 0.
If ~a is empty then there is no restriction.

Example:
Let P = (νa) ( A〈 a 〉 | (νa) a.0 )

with A( a )
def
= a.(νa) a.0

Is there a standard form P̂ with P̂ ≡ P ?
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Standard Form (II)

Theorem: Every process is structurally
congruent to a standard form.

Proof ? Homework !

Example: [Milner 99: Exercise 4.10]

If (νa) P ≡ P , then a 6∈ fn(P ).

In other words, in any standard from, we can
ensure that the outermost restriction only
involves free names in some Mi.
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Linking

Let P be a process with ports l (left) and r (right),
then we may link two copies of P through:

P _ Q
def
= (νm) ( {m/r}P | {m/l}Q )

Although often omitted due to laziness, is is
clearer to make explicit the parameters of P :

P 〈 l, r 〉_ Q〈 l, r 〉
def
= (νm) ( {m/r}P 〈 l, r 〉 | {m/l}Q〈 l, r 〉 )

≡ (νm) ( P 〈 l,m 〉 | Q〈m, r 〉 )
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Linking (II)

Prove that:

P _( Q _ R ) ≡ ( P _ Q ) _ R
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Reaction

Definition: The reaction relation −→ over P is
generated by the following rules:

TAU: τ.P+M −→ P REACT: a.P+M |a.Q+N −→ P |Q

PAR:
P −→ P ′

P |Q −→ P ′|Q
RES:

P −→ P ′

(νa) P −→ (νa) P ′

STRUCT:
P −→ P ′

Q −→ Q′ IF P ≡ Q AND P ′ ≡ Q′
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Reaction (II)

Compare to sequential process expressions !

One “sees” the reactions almost directly when
transforming a concurrent process expression
into a standard form !

However, one is not obliged to do so :-)
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Example Reactions

Recall:

P = (νa) ( a.Q1 + b.Q2 | a.0 ) | b.R1 + a.R2

P −→ (νa) ( Q1 | 0 ) | b.R1 + a.R2

P −→ (νa) ( Q2 | a.0 ) | R1

Use the reaction rules to derive the above
reactions formally.
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