Sequential Process Expressions

January 7, 2002, 17:43
Uwe Nestmann

EPFL-LAMP

Repetition of Algebraic Notions (III)

congruence

- replacing equals for equals, i.e., preservation of equivalence under ...

From Models to Languages

- represent system states by expressions
- hold information about structure and behavior
- "indicate" / infer the possible transitions

Sequential Process Expressions

I process identifiers $A, B \ldots$
\mathcal{N} names
$a, b, c \ldots$
$\overline{\mathcal{N}}$ co-names $\bar{a}, \bar{b}, \bar{c} \ldots$
\mathcal{L} labels (buttons)
\mathcal{A} actions
$:=\mathcal{N} \cup \overline{\mathcal{N}}$
metavariables $\alpha, \beta \ldots \in \mathcal{L}$

- finite sequences \vec{a} for names $a_{1} \ldots, a_{n}$
- parametric processes $A\langle a, c\rangle$ with name parameters (not co-names, labels, ...)

Sequential Process Expressions (II)

Definition: The set $\mathcal{P}^{\text {seq }}$ of seq. proc. exp. is defined (precisely) by the following BNF-syntax:

$$
P \quad::=A\langle\vec{a}\rangle \quad \mid \quad \sum_{i \in I} \alpha_{i} . P_{i}
$$

where I is any finite indexing set. We use $P, Q, P_{i} \ldots$ to stand for process expressions.

$$
\begin{aligned}
& I=\{1,2\}: \ldots \\
& I=\{\star\} \quad: \ldots \\
& I=\emptyset \quad: \ldots
\end{aligned}
$$

Sequential Process Expressions (III)

- each process identifier A is assumed to have a defining equation (note the brackets)

$$
A(\vec{a}) \stackrel{\text { def }}{=} P_{A}
$$

where P_{A} is a summation, \vec{a} includes $\mathrm{fn}\left(P_{A}\right)$.

- $\mathrm{fn}(P)$: the set of all of the (free) names of P
- $A\langle\vec{b}\rangle$ means the same as $\{\vec{b} / \vec{a}\} P_{A}$
- substitution $\{\vec{b} / \vec{a}\} P$ (for matching \vec{b} and \vec{a}) replaces all occurrences of a_{i} in P by b_{i}.

Inductive Syntax

Is it well-defined?

Definition:

The set $\mathrm{fn}(P)$ is defined inductively by:

$$
\begin{array}{ll}
\mathrm{fn}(A\langle\vec{a}\rangle) & \stackrel{\text { def }}{=} \ldots \\
\mathrm{fn}\left(\sum_{i \in I} \alpha_{i} \cdot P_{i}\right) & \stackrel{\text { def }}{=} \ldots
\end{array}
$$

Inductive Syntax (II)

Define substitution formally, i.e., inductively !
$\{b / c\} \alpha \stackrel{\text { def }}{=} \begin{cases}b & \text { if } \alpha=c \\ \bar{b} & \text { if } \alpha=\bar{c} \\ \alpha & \text { otherwise }\end{cases}$
$\{b / c\} A\langle\vec{a}\rangle \quad \stackrel{\text { def }}{=} \ldots$
$\{b / c\} \sum_{i \in I} \alpha_{i} \cdot P_{i} \stackrel{\text { def }}{=} \ldots$

Inductive Syntax (III)

Define simultaneous substitution formally !

First, compute: $\left\{b / c,{ }^{a} / b\right\} a . \bar{b} . c=\ldots$
$\{\vec{b} / \vec{c}\} \alpha \xlongequal{=} \begin{cases}\ldots & \text { if } \alpha=c \\ \ldots & \text { if } \alpha=\bar{c} \\ \ldots & \text { otherwise }\end{cases}$
$\{\vec{b} / \vec{c}\} A\langle\vec{a}\rangle \quad \stackrel{\text { def }}{=} \ldots$
$\{\vec{b} / \vec{c}\} \sum_{i \in I} \alpha_{i} \cdot P_{i} \xlongequal{\text { def }} \ldots$

Structural Congruence

Definition:

Two seq. proc. exp. P and Q are structurally congruent, written $P \equiv Q$, if we can transform one into the other by replacing occurrences of $A\langle\vec{b}\rangle$ by $\{\vec{b} / \vec{a}\} P_{A}$, or vice versa,
for arbitrary A defined by $A(\vec{a}) \stackrel{\text { def }}{=} P_{A}$.

Structural Congruence (II)

More "mathematically" (i.e., more precisely): the relation \equiv is the smallest congruence generated ${ }^{(*)}$ by the set of axioms

$$
A\langle\vec{b}\rangle \equiv\{\vec{b} / \vec{a}\} P_{A}
$$

induced from all A defined by $A(\vec{a}) \stackrel{\text { def }}{=} P_{A}$.
(*): reflexive-symmetric-transitive context closure ("contexts" are expressions with single holes)

Structural Congruence (III)

$$
\begin{gathered}
\overline{P \equiv P} \quad \frac{P \equiv Q}{Q \equiv P} \quad \frac{P \equiv Q \quad Q \equiv R}{P \equiv R} \\
\frac{P \equiv Q}{C[P] \equiv C[Q]}
\end{gathered}
$$

where $C[\cdot]$ denote an arbitrary "process context" and $C[P]$ denotes filling the hole of $C[\cdot]$ with P.

Process Contexts

(* just as a hint on how to define them formally *)
Definition: A process context $C[\cdot]$ is (precisely) defined by the following syntax:

$$
\begin{aligned}
C[\cdot] & ::= \\
M & ::=\sum_{i \in I} \alpha_{i} \cdot P_{i}
\end{aligned}
$$

where I is any finite indexing set.
Note: summation is assumed to be commutative

Example

$$
\begin{aligned}
& A(a, b) \stackrel{\text { def }}{=} a \cdot A\langle a, b\rangle+b \cdot B\langle a, a\rangle \\
& B(c, d) \stackrel{\text { def }}{=} c . d . \mathbf{0}
\end{aligned}
$$

- exhibit some structural congruences
- rewrite $A\langle c, d\rangle$ best without the use of process identifiers
- play with the variant

$$
A(a, b) \stackrel{\text { def }}{=} a \cdot A\langle b, a\rangle+b \cdot B\langle a, a\rangle
$$

The LTS of Sequential Processes

Definition:

The LTS of sequential processes over \mathcal{A} is defined to have states $\mathcal{P}^{\text {seq }}$ and transitions as follows:
if $P \equiv \sum_{i \in I} \alpha_{i} \cdot P_{i}$ then, for each $j \in I, P \xrightarrow{\alpha_{j}} P_{j}$.
Note: We distinguish
the LTS of a single process expression (from the LTS of all process expressions) as just the part reachable from it.

Example: Boolean Buffer [Mi199, § 3.5

$$
\begin{aligned}
\mathcal{N} & :=\left\{\text { in }_{i}, \text { out }_{i} \mid i \in\{0,1\}\right\} \\
s & \in\{\epsilon, 0,1,00,01,10,11\}
\end{aligned}
$$

Buff $_{s}^{(2)} \quad \stackrel{\text { def }}{=}$ 2-place buffer containing s
Buff ${ }^{(2)} \stackrel{\text { def }}{=} \sum_{i \in\{0,1\}}$ in $_{i}$. Buff $_{i}^{(2)}$
Buff $_{i}^{(2)} \stackrel{\text { def }}{=} \overline{\text { out }}_{i}$. Buff $^{(2)}+\sum_{j \in\{0,1\}}$ in $_{j}$. Buff ${ }_{j i}^{(2)}$
Buff $_{i j}^{(2)} \stackrel{\text { def }}{=} \overline{\text { out }}_{j}$. Buff $_{i}^{(2)}$

- modify Buff ${ }_{s}^{(2)}$ to release values in either order
- write an analogous definition for $\mathrm{Buff}_{s}^{(3)}$

Example: Scheduler (I) [Mi199, § 3.6]

- processes $P_{i}, 0 \leq i \leq n-1$ to be scheduled
- P_{i} starts by pressing a_{i} of the scheduler
- P_{i} completes by signalling b_{i} to the scheduler
- each P_{i} must not run two tasks at a time
- tasks of different P_{i} may run at a time
- a_{i} are required to occur cyclically (1 starts)
- for each i, a_{i} and b_{i} must occur cyclically
- permit maximal "pressure"

Example: Scheduler (II) [Mil99, § 3.6]

$i \in\{0 \ldots, n-1\} \quad X \subseteq\{0 \ldots, n-1\}$
$\mathrm{S}_{i, X} \stackrel{\text { def }}{=}$ scheduler, where i is next and X are running
$\mathrm{S} \stackrel{\text { def }}{=} \mathrm{S}_{0, \emptyset}$
$\mathrm{S}_{i, X} \stackrel{\text { def }}{=}\left\{\begin{array}{lr}\sum_{j \in X} b_{j} \cdot \mathrm{~S}_{i, X-j} & (i \in X) \\ \sum_{j \in X} b_{j} \cdot \mathrm{~S}_{i, X-j}+a_{i} \cdot \mathrm{~S}_{i+1 \bmod n, X \cup i} & (i \notin X)\end{array}\right.$

- show that the scheduler is never deadlocked
- draw the transition graph for $n=2$
- what is the difference when dropping $i \in X$?

Example: Counter [Mi199, § 3.7]

$$
\begin{array}{cl}
\mathrm{C} & \stackrel{\text { def }}{=} \mathrm{C}_{0} \\
\mathrm{C}_{0} & \stackrel{\text { def }}{=} \text { inc. } \mathrm{C}_{1}+\overline{\text { zero. }} \cdot \mathrm{C}_{0} \\
\mathrm{C}_{n+1} & \stackrel{\text { def }}{=} \text { inc. } \mathrm{C}_{n+2}+\overline{\operatorname{dec}} \cdot \mathrm{C}_{n}
\end{array}
$$

- generalize the counter to a stack of booleans
- modify the stack to become a queue

