
Sequential Process Expressions
January 7, 2002, 17:43

Uwe Nestmann

EPFL-LAMP

14-Nov-2001: Session 4 – p.1/19

Repetition of Algebraic Notions (III)

congruence
• replacing equals for equals, i.e.,

preservation of equivalence under . . .

14-Nov-2001: Session 4 – p.2/19

From Models to Languages

• represent system states by expressions
• hold information about structure and behavior
• “indicate” / infer the possible transitions

14-Nov-2001: Session 4 – p.3/19

Sequential Process Expressions

I process identifiers A,B . . .

N names a, b, c . . .

N co-names a, b, c . . .

L labels (buttons) := N ∪N

A actions metavariables α, β . . . ∈ L

• finite sequences ~a for names a1 . . . , an

• parametric processes A〈 a, c 〉 with
name parameters (not co-names, labels, . . .)

14-Nov-2001: Session 4 – p.4/19

Sequential Process Expressions (II)

Definition: The set P seq of seq. proc. exp. is
defined (precisely) by the following BNF-syntax:

P ::= A〈~a 〉
∣

∣

∑

i∈I

αi.Pi

where I is any finite indexing set. We use
P,Q, Pi . . . to stand for process expressions.

I = {1, 2} : . . .

I = {?} : . . .

I = ∅ : . . .
14-Nov-2001: Session 4 – p.5/19

Sequential Process Expressions (III)

• each process identifier A is assumed to have
a defining equation (note the brackets)

A(~a)
def
= PA

where PA is a summation, ~a includes fn(PA).

• fn(P): the set of all of the (free) names of P

• A〈~b 〉 means the same as {~b/~a}PA

• substitution {
~b/~a}P (for matching ~b and ~a)

replaces all occurrences of ai in P by bi.
14-Nov-2001: Session 4 – p.6/19

Inductive Syntax

Is it well-defined ?

Definition:
The set fn(P) is defined inductively by:

fn(A〈~a 〉)
def
= . . .

fn(
∑

i∈I

αi.Pi)
def
= . . .

. . .

14-Nov-2001: Session 4 – p.7/19

Inductive Syntax (II)

Define substitution formally, i.e., inductively !

{b/c}α
def
=

b if α = c

b if α = c

α otherwise

{b/c}A〈~a 〉
def
= . . .

{b/c}
∑

i∈I

αi.Pi
def
= . . .

14-Nov-2001: Session 4 – p.8/19

Inductive Syntax (III)

Define simultaneous substitution formally !

First, compute: { b/c ,a/b }a.b.c = . . .

{
~b/~c}α

def
=

. . . if α = c

. . . if α = c

. . . otherwise

{
~b/~c}A〈~a 〉

def
= . . .

{
~b/~c}

∑

i∈I

αi.Pi
def
= . . .

. . .
14-Nov-2001: Session 4 – p.9/19

Structural Congruence

Definition:
Two seq. proc. exp. P and Q
are structurally congruent, written P ≡ Q,
if we can transform one into the other
by replacing occurrences of A〈~b 〉 by {~b/~a}PA,
or vice versa,

for arbitrary A defined by A(~a)
def
= PA.

14-Nov-2001: Session 4 – p.10/19

Structural Congruence (II)

More “mathematically” (i.e., more precisely):
the relation ≡ is the smallest congruence
generated(∗) by the set of axioms

A〈~b 〉 ≡ {
~b/~a}PA

induced from all A defined by A(~a)
def
= PA.

(∗): reflexive-symmetric-transitive context closure
(“contexts” are expressions with single holes)

14-Nov-2001: Session 4 – p.11/19

Structural Congruence (III)

P ≡ P

P ≡ Q

Q ≡ P

P ≡ Q Q ≡ R

P ≡ R

P ≡ Q

C[P] ≡ C[Q]

where C[·] denote an arbitrary “process context”
and C[P] denotes filling the hole of C[·] with P .

14-Nov-2001: Session 4 – p.12/19

Process Contexts

(* just as a hint on how to define them formally *)

Definition: A process context C[·] is (precisely)
defined by the following syntax:

C[·] ::= [·]
∣

∣ α.C[·] + M

M ::=
∑

i∈I

αi.Pi

where I is any finite indexing set.

Note: summation is assumed to be commutative

14-Nov-2001: Session 4 – p.13/19

Example

A(a, b)
def
= a.A〈 a, b 〉 + b.B〈 a, a 〉

B(c, d)
def
= c.d.0

• exhibit some structural congruences
• rewrite A〈 c, d 〉

best without the use of process identifiers
• play with the variant

A(a, b)
def
= a.A〈 b, a 〉 + b.B〈 a, a 〉

14-Nov-2001: Session 4 – p.14/19

The LTS of Sequential Processes

Definition:
The LTS of sequential processes over A
is defined to have states P seq

and transitions as follows:
if P ≡

∑

i∈I

αi.Pi then, for each j ∈ I, P
αj

−−→ Pj.

Note: We distinguish
the LTS of a single process expression
(from the LTS of all process expressions)
as just the part reachable from it.

14-Nov-2001: Session 4 – p.15/19

Example: Boolean Buffer [Mil99, § 3.5]

N := { ini, outi | i ∈ {0, 1} }

s ∈ {ε, 0, 1, 00, 01, 10, 11}

Buff
(2)
s

def
= 2-place buffer containing s

Buff(2)
def
=

∑

i∈{0,1} ini.Buff
(2)
i

Buff
(2)
i

def
= outi.Buff(2) +

∑

j∈{0,1} inj.Buff
(2)
ji

Buff
(2)
ij

def
= outj.Buff

(2)
i

• modify Buff
(2)
s to release values in either order

• write an analogous definition for Buff
(3)
s

14-Nov-2001: Session 4 – p.16/19

Example: Scheduler (I) [Mil99, § 3.6]

• processes Pi, 0 ≤ i ≤ n−1 to be scheduled
• Pi starts by pressing ai of the scheduler
• Pi completes by signalling bi to the scheduler

• each Pi must not run two tasks at a time

• tasks of different Pi may run at a time

• ai are required to occur cyclically (1 starts)
• for each i, ai and bi must occur cyclically
• permit maximal “pressure”

14-Nov-2001: Session 4 – p.17/19

Example: Scheduler (II) [Mil99, § 3.6]

i ∈ {0 . . . , n− 1} X ⊆ {0 . . . , n− 1}

Si,X
def
= scheduler, where i is next and X are running

S
def
= S0,∅

Si,X
def
=

{

∑

j∈X bj.Si,X−j (i ∈ X)
∑

j∈X bj.Si,X−j + ai.Si+1 mod n,X∪i (i 6∈ X)

• show that the scheduler is never deadlocked
• draw the transition graph for n = 2

• what is the difference when dropping i ∈ X?

14-Nov-2001: Session 4 – p.18/19

Example: Counter [Mil99, § 3.7]

C
def
= C0

C0
def
= inc.C1 + zero.C0

Cn+1
def
= inc.Cn+2 + dec.Cn

• generalize the counter to a stack of booleans
• modify the stack to become a queue

14-Nov-2001: Session 4 – p.19/19

	Repetition of Algebraic Notions (III)
	 From Models to Languages
	 Sequential Process Expressions
	 Sequential Process Expressions (II)

	 Sequential Process Expressions (III)

	 Inductive Syntax
	 Inductive Syntax (II)

	 Inductive Syntax (III)

	 Structural Congruence
	 Structural Congruence (II)

	 Structural Congruence (III)

	 Process Contexts
	 Example
	 The LTS of Sequential Processes
	 Example: Boolean Buffer [Mil99, S ~3.5]
	 Example: Scheduler (I)
[Mil99, S ~3.6]
	 Example: Scheduler (II)
[Mil99, S ~3.6]
	 Example: Counter [Mil99, S ~3.7]

