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Repetition of Algebraic Notions (III)

congruence
• replacing equals for equals, i.e.,

preservation of equivalence under . . .
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From Models to Languages

• represent system states by expressions
• hold information about structure and behavior
• “indicate” / infer the possible transitions
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Sequential Process Expressions

I process identifiers A,B . . .

N names a, b, c . . .

N co-names a, b, c . . .

L labels (buttons) := N ∪N

A actions metavariables α, β . . . ∈ L

• finite sequences ~a for names a1 . . . , an

• parametric processes A〈 a, c 〉 with
name parameters (not co-names, labels, . . . )
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Sequential Process Expressions (II)

Definition: The set P seq of seq. proc. exp. is
defined (precisely) by the following BNF-syntax:

P ::= A〈~a 〉
∣

∣

∑

i∈I

αi.Pi

where I is any finite indexing set. We use
P,Q, Pi . . . to stand for process expressions.

I = {1, 2} : . . .

I = {?} : . . .

I = ∅ : . . .
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Sequential Process Expressions (III)

• each process identifier A is assumed to have
a defining equation (note the brackets)

A(~a )
def
= PA

where PA is a summation, ~a includes fn(PA).

• fn(P ): the set of all of the (free) names of P

• A〈~b 〉 means the same as {~b/~a}PA

• substitution {
~b/~a}P (for matching ~b and ~a)

replaces all occurrences of ai in P by bi.
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Inductive Syntax

Is it well-defined ?

Definition:
The set fn(P ) is defined inductively by:

fn(A〈~a 〉)
def
= . . .

fn(
∑

i∈I

αi.Pi)
def
= . . .

. . .
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Inductive Syntax (II)

Define substitution formally, i.e., inductively !

{b/c}α
def
=











b if α = c

b if α = c

α otherwise

{b/c}A〈~a 〉
def
= . . .

{b/c}
∑

i∈I

αi.Pi
def
= . . .
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Inductive Syntax (III)

Define simultaneous substitution formally !

First, compute: { b/c ,a/b }a.b.c = . . .

{
~b/~c}α

def
=











. . . if α = c

. . . if α = c

. . . otherwise

{
~b/~c}A〈~a 〉

def
= . . .

{
~b/~c}

∑

i∈I

αi.Pi
def
= . . .

. . .
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Structural Congruence

Definition:
Two seq. proc. exp. P and Q
are structurally congruent, written P ≡ Q,
if we can transform one into the other
by replacing occurrences of A〈~b 〉 by {~b/~a}PA,
or vice versa,

for arbitrary A defined by A(~a )
def
= PA.
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Structural Congruence (II)

More “mathematically” (i.e., more precisely):
the relation ≡ is the smallest congruence
generated(∗) by the set of axioms

A〈~b 〉 ≡ {
~b/~a}PA

induced from all A defined by A(~a )
def
= PA.

(∗): reflexive-symmetric-transitive context closure
(“contexts” are expressions with single holes)
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Structural Congruence (III)

P ≡ P

P ≡ Q

Q ≡ P

P ≡ Q Q ≡ R

P ≡ R

P ≡ Q

C[P ] ≡ C[Q]

where C[·] denote an arbitrary “process context”
and C[P ] denotes filling the hole of C[·] with P .
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Process Contexts

(* just as a hint on how to define them formally *)

Definition: A process context C[·] is (precisely)
defined by the following syntax:

C[·] ::= [·]
∣

∣ α.C[·] + M

M ::=
∑

i∈I

αi.Pi

where I is any finite indexing set.

Note: summation is assumed to be commutative
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Example

A( a, b )
def
= a.A〈 a, b 〉 + b.B〈 a, a 〉

B( c, d )
def
= c.d.0

• exhibit some structural congruences
• rewrite A〈 c, d 〉

best without the use of process identifiers
• play with the variant

A( a, b )
def
= a.A〈 b, a 〉 + b.B〈 a, a 〉
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The LTS of Sequential Processes

Definition:
The LTS of sequential processes over A
is defined to have states P seq

and transitions as follows:
if P ≡

∑

i∈I

αi.Pi then, for each j ∈ I, P
αj

−−→ Pj.

Note: We distinguish
the LTS of a single process expression
(from the LTS of all process expressions)
as just the part reachable from it.
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Example: Boolean Buffer [Mil99, § 3.5]

N := { ini, outi | i ∈ {0, 1} }

s ∈ {ε, 0, 1, 00, 01, 10, 11}

Buff
(2)
s

def
= 2-place buffer containing s

Buff(2)
def
=

∑

i∈{0,1} ini.Buff
(2)
i

Buff
(2)
i

def
= outi.Buff(2) +

∑

j∈{0,1} inj.Buff
(2)
ji

Buff
(2)
ij

def
= outj.Buff

(2)
i

• modify Buff
(2)
s to release values in either order

• write an analogous definition for Buff
(3)
s
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Example: Scheduler (I) [Mil99, § 3.6]

• processes Pi, 0 ≤ i ≤ n−1 to be scheduled
• Pi starts by pressing ai of the scheduler
• Pi completes by signalling bi to the scheduler

• each Pi must not run two tasks at a time

• tasks of different Pi may run at a time

• ai are required to occur cyclically (1 starts)
• for each i, ai and bi must occur cyclically
• permit maximal “pressure”
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Example: Scheduler (II) [Mil99, § 3.6]

i ∈ {0 . . . , n− 1} X ⊆ {0 . . . , n− 1}

Si,X
def
= scheduler, where i is next and X are running

S
def
= S0,∅

Si,X
def
=

{

∑

j∈X bj.Si,X−j (i ∈ X)
∑

j∈X bj.Si,X−j + ai.Si+1 mod n,X∪i (i 6∈ X)

• show that the scheduler is never deadlocked
• draw the transition graph for n = 2

• what is the difference when dropping i ∈ X?
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Example: Counter [Mil99, § 3.7]

C
def
= C0

C0
def
= inc.C1 + zero.C0

Cn+1
def
= inc.Cn+2 + dec.Cn

• generalize the counter to a stack of booleans
• modify the stack to become a queue
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