Equivalence Notions

January 7, 2002, 17:43

Uwe Nestmann

EPFL-DI-LAMP

Repetition of Algebraic Notions (II)

relations/functions

- composition
- comparison, containment

preorder/equivalence

- reflexivity
- symmetry
- transitivity
- comparison, containment vs fine/coarse

Repetition: Strong Simulation

Learned by heart?

Then write it down from memory!

A binary relation S . . .

q simulates p if . . .

Is any simulation a preorder?

The Largest Simulation

Lemma:

If S_1 and S_2 are simulations, then

- $S_1 \cup S_2$ is also a simulation.
- $S_1 \cap S_2$ is also a simulation ?
- S_1S_2 is also a simulation ?

Definition: Let (Q,T) be a LTS.

 $\preceq \stackrel{\text{def}}{=} \bigcup \{ \mathcal{S} \mid \mathcal{S} \text{ is simulation over } (Q, T) \}$

Fact: \leq is the largest simulation over (Q, T).

Working with Simulation

Example: Find all non-trivial simulations in $\{(1,b,2),(1,c,3),(4,b,5),(6,b,7),(6,c,8),(6,c,9)\}$ How many are there ?

Trivial pairs any pairs with elements from $\{2, 3, 5, 7, 8, 9\}$ (because there are no transitions), as well as any identity on $\{1, 4, 6\}$.

Trivial simulations are those that either (0) are empty, or (1) contain only trivial pairs, or (2) contain at least one trivial pair that is not reachable from a contained non-trivial one.

Mutual Simulation: Back and Forth

Definition:

Let (Q,T) be a LTS. Let $\{p,q\}\subseteq Q$.

p and q are **mutually similar**, written $p \ge q$, if there is a pair (S_1, S_2) of simulations S_1 and S_2 with pS_1qS_2p .

Example: Mut. Sim. vs Lang. Equiv.

Mutual Simulation (II)

Proposition:

• ≥ is an equivalence relation.

Proof?

Mut. Sim. vs Lang. Equiv.

$$Lang(p) = Lang(q)$$

$$p \geqslant q$$

$$=_{\text{Lang}}$$

$$\geqslant$$

Strong Bisimulation

Definition: (learn it by heart!)

A binary relation $\mathcal B$ over Q is a **strong** bisimulation over the LTS (Q,T) if both $\mathcal B$ and its converse $\mathcal B^{-1}$ are strong simulations.

p and q are **strongly bisimilar**, written $p \sim q$, if there is a strong bisimulation \mathcal{B} such that $p\mathcal{B}q$.

Strong Bisimulation (II)

Proposition:

- ullet \sim is an equivalence relation.
- ullet \sim is (itself) a strong bisimulation.
- ullet \sim is the largest strong bisimulation.

Proof?

Example

$$\{(1, a, 2), (1, a, 3), (2, a, 3), (2, b, 1), (3, a, 3), (3, b, 1), (4, a, 5), (5, a, 5), (5, b, 6), (6, a, 5), (7, a, 8), (8, a, 8), (8, b, 7)\}$$

Prove $1 \sim 4 \sim 7$.

Write out $\sim \dots$

Minimize?

Example: Mutual vs Bi

Isomorphism on LTS

Definition:

Let (Q_i, T_i) be two LTS over *Act* for $i \in \{1, 2\}$.

$$(Q_1,T_1)$$
 and (Q_2,T_2) are **isomorph(ic)**, written $(Q_1,T_1)\cong (Q_2,T_2)$, if there is a **bijection** f on between Q_1 and Q_2 that preserves T , i.e., $f:Q_1\to Q_2$ with $q\stackrel{\alpha}{\longrightarrow} q'$ iff $f(q)\stackrel{\alpha}{\longrightarrow} f(q')$.

Isomorphism on LTS (II)

Proposition:

 $\bullet \cong$ is an equivalence relation (on the domain of LTSs).

Proof?

Be careful with the interpretation of reflexivity, symmetry, and transitivity . . .

"Problem":

Isomorphism compares two transition systems; Bisimulation (at least as we have defined it) compares two states.

Redefine $\mathcal{B} \subseteq Q_1 \times Q_2$ to be a bisimulation if \mathcal{B} and \mathcal{B}^{-1} are simulations on their respective domains, i.e., $\mathcal{B}^{-1} \subseteq Q_2 \times Q_1$.

Redefine \sim to the whole domain of LTSs. Be careful with the interpretation of reflexivity, symmetry, and transitivity . . .

1. reachability

$$(Q_1, T_1) = (\{q_1^0, q_1^1, q_1^2\}, \{(q_1^0, a, q_1^1)\})$$

$$(Q_2, T_2) = (\{q_2^0, q_2^1\}, \{(q_2^0, a, q_2^1)\})$$

2. copying

$$(Q_{1}, T_{1}) = (\{q_{1}^{0}, q_{1}^{1}, q_{1}^{2}\}, \{(q_{1}^{0}, a, q_{1}^{1}), (q_{1}^{1}, b, q_{1}^{2}), (q_{1}^{1}, c, q_{1}^{3})\})$$

$$(Q_{2}, T_{2}) = (\{q_{1}^{0}, q_{1}^{1}, q_{1}^{2}, q_{1}^{3}, \underline{q'_{1}^{1}, q'_{1}^{2}, q'_{1}^{3}}\}, \{(q_{2}^{0}, a, q_{2}^{1}), (q_{2}^{1}, b, q_{2}^{2}), (q_{2}^{1}, c, q_{2}^{3}), (q_{2}^{0}, a, q'_{2}^{1}), (q'_{2}^{1}, b, q'_{2}^{2}), (q'_{2}^{1}, c, q'_{2}^{3})\})$$

3. recursion/unfolding

$$(Q_1, T_1) = (\{q_i \mid i \in \mathbb{N}_0\}, \{(q_i, a, q_{i+1}) \mid i \in \mathbb{N}_0\})$$

$$(Q_2, T_2) = (\{q_0\}, \{(q_0, a, q_0)\})$$

Which is the Best Equivalence?

language equivalence mutual simulatity bisimilarity isomorphism identity

$$=$$
 \simeq \sim $=_{
m I}$

To be remembered: What are the intuitive distinguishing aspects between all of these notions of equivalence? (\rightarrow Exam ...)