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Repetition of Algebraic Notions

relation
• binary, ternary, . . .

• function
• partial/total
• injective
• surjective
• converse/inverse
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Automata

An automaton A = (Q, q0, F, T )
over an action alphabet Act:
• a set Q = {q0, q1 . . .}: the states
• a state q0 ∈ Q: the start state
• a subset F ⊆ Q: the accepting states
• a subset T ⊆ (Q× Act ×Q): the transitions

A transition (q, α, q′) ∈ T is also written q
α

−−→ q′.
Transition Graphs are useful . . .
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Example Automaton

Let Act be {a, b, c}.
Let A be defined as
( {q0, q1, q2, q3}, q0, {q1},

{ (q0, b, q3), (q0, c, q3), (q0, a, q1),

(q1, c, q0), (q1, a, q3), (q1, b, q2),

(q2, c, q0), (q2, a, q3), (q2, b, q3),

(q3, c, q3), (q3, a, q3), (q3, b, q3),

}

)
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Automata (II)

An automaton A is
• finite-state, if Q is finite, and
• deterministic if for each pair (q, α) ∈ Q× Act

there is exactly one transition q
α

−−→ q′.

Question: Would the formulation “at most one”
transition yield less deterministic automata?

Note: “Complete” an automaton?
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Behavior: Language of an Automaton

Let A be an automaton over Act.
Let s = α1 . . . αn be a string over Act. Then:
• A is said to accept s, if there is a path in A

— from q0 to some accepting state —
whose arcs are labeled successively α1 . . . αn.

• The language of A, denoted by Â, is the set
of strings accepted by A.

ε denotes the empty string.
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Regular Sets

Definition: A set of strings over Act is regular
if it can be built from
• the empty set ∅ and the singleton sets {α}

(for each α ∈ Act),
• using the operations of union (∪),

concatenation (·), and iteration (∗).

S1 · S2

def
= . . .

S∗ def
= . . .

In regular sets, we write α for {α} and ε for {ε}.
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Regular Expressions

Definition: The set of regular expressions over
Act is generated by the following grammar:

e ::= ε
∣∣ α

∣∣ e + e
∣∣ e · e

∣∣ e∗

where α ∈ Act.
In regular expressions, we write αβ for α · β . . .

regular expressions vs regular sets
(a + b)c {ac, bc}

a + bc {a, bc}
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Regular Expressions (II)

(S1 · S2) · S3 = S1 · (S2 · S3)

S · ε = S

S · ∅ = ∅

(S1 + S2) · T = S1 · T + S2 · T

T · (S1 + S2) = T · S1 + T · S2

S · (T · S)∗ = (S · T )∗ · S
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Note:
The regular set ∅ means “no path”. But:
The regular expression ε means “empty path”.

∅ 6= {ε}

As an example, compare {αβ} · {ε} with {αβ} · ∅.
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Arden’s rule

Theorem:
For any sets of strings S and T , the equation

X = S ·X + T has X = S∗ · T

as a solution.
Moreover, this solution is unique if ε 6∈ S.

Fact: The language Â of any finite-state
automaton A is regular.

31-Oct-2001: Session 2 – p.11/22



Example Automaton

Determine the language of the previous
automaton as the regular expression describing
the strings accepted in the initial state.

Write down a set of equations,
one equation for each state.

Solve the set of equations . . .
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Determinism / Nondeterminism

Analyze two automata . . .

Exercise in § 2.4 of [Mil99]

Message: Language equivalence
is blind for nondeterminism.

In fact, every nondeterministic automaton can be
converted into a determinstic that accepts the
same language.
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The Zen of Black Boxes

• automata as black boxes
• actions as buttons (for interaction)

“What matters of a string s (a sequence of
actions) is not whether it drives the automaton
into an accepting state (since we cannot detect
this by interaction) but whether the automaton is
able to perform the sequence s interactively.”
[Mil99]

Attempt: Consider every state accepting . . .
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Prefixes

If a string s can be expressed in the form s1s2,
then s1 is a prefix of s.

A language S is prefix-closed if,
whenever s1s2 ∈ S, then also s1 ∈ S.

The prefix-closure of a language S is the larger
language Pref(S) that contains all the prefixes of
every string in S. Pref(S) is the smallest
prefix-closed language that includes S.
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Tea / Coffee

Reinterpret the previous automata as tea/coffee
machines.

Observe the mismatch between
black-box-interaction and accepted languages.

Observe the representation of the mismatch in
the equations satisfied by regular languages.

Attempt: Consider any state starting . . .
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Labeled Transition Systems

Definition:
An LTS L = (Q, T ) over an action alphabet Act:

• a set of states Q = {q0, q1 . . .}

• a ternary transition relation
T ⊆ (Q× Act ×Q)

A transition (q, α, q′) ∈ T is also written q
α

−−→ q′.

If q
α1

−−−→ q1 · · ·
αn

−−−→ qn we call qn a derivative of q.

Transition Graphs are useful . . .
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Equivalence on LTS

Recall why we are interested in equivalence
relations on our model.

When should two LTS (or two states within an
LTS) be considered equivalent?

• language equivalence ?
• isomorphism ?

Try to interact with them . . .

. . . and observe any possible difference.
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Equivalence on LTS (II)

Example: Compare p0 and q0 in

{ (p0, a, p1), (p1, b, p2), (p1, c, p3),

(q0, a, q1), (q0, a, q′1), (q1, b, q2), (q
′
1, c, q3) }

Motivate simulation !

Induce simulation of paths
through step-by-step simulation of actions . . .
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Strong Simulation on LTS

Definition: (learn it by heart!)
Let (Q, T ) be an LTS.
Let S be a binary relation over Q.

Then S is a strong simulation over (Q, T ) if

whenever pSq: if p
α

−−→ p′

then there is q′ ∈ Q such that q
α

−−→ q′ and p′Sq′.

q strongly simulates p

if there is a strong simulation S such that pSq.

31-Oct-2001: Session 2 – p.20/22



Working with Simulation

• exhibiting a simulation
• checking a simulation
• “generating” a simulation

What changes if we define simulation between
two different LTSs instead of on a single one?
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Working with Simulation (II)

Example: Find all non-trivial simulations in . . .
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