Models for Concurrent Behaviors

January 7, 2002, 17:43
Uwe Nestmann

EPFL-DI-LAMP

Repetition of Algebraic Notions

relation

- binary, ternary, ...
- function
- partial/total
- injective
- surjective
- converse/inverse

Automata

An automaton $A=\left(Q, q_{0}, F, T\right)$ over an action alphabet Act:

- a set $Q=\left\{q_{0}, q_{1} \ldots\right\}$: the states
- a state $q_{0} \in Q$: the start state
- a subset $F \subseteq Q$: the accepting states
- a subset $T \subseteq(Q \times$ Act $\times Q)$: the transitions

A transition $\left(q, \alpha, q^{\prime}\right) \in T$ is also written $q \xrightarrow{\alpha} q^{\prime}$. Transition Graphs are useful ...

Example Automaton

Let Act be $\{a, b, c\}$.
Let A be defined as
$\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}, q_{0},\left\{q_{1}\right\}\right.$,
$\left\{\left(q_{0}, b, q_{3}\right),\left(q_{0}, c, q_{3}\right),\left(q_{0}, a, q_{1}\right)\right.$,
$\left(q_{1}, c, q_{0}\right),\left(q_{1}, a, q_{3}\right),\left(q_{1}, b, q_{2}\right)$,
$\left(q_{2}, c, q_{0}\right),\left(q_{2}, a, q_{3}\right),\left(q_{2}, b, q_{3}\right)$,
$\left(q_{3}, c, q_{3}\right),\left(q_{3}, a, q_{3}\right),\left(q_{3}, b, q_{3}\right)$,
\}
)

Automata (II)

An automaton A is

- finite-state, if Q is finite, and
- deterministic if for each pair $(q, \alpha) \in Q \times \boldsymbol{A c t}$ there is exactly one transition $q \xrightarrow{\alpha} q^{\prime}$.

Question: Would the formulation "at most one" transition yield less deterministic automata?

Note: "Complete" an automaton?

Behavior: Language of an Automaton

Let A be an automaton over Act.
Let $s=\alpha_{1} \ldots \alpha_{n}$ be a string over Act. Then:

- A is said to accept s, if there is a path in A
- from q_{0} to some accepting state whose arcs are labeled successively $\alpha_{1} \ldots \alpha_{n}$.
- The language of A, denoted by \widehat{A}, is the set of strings accepted by A.
ϵ denotes the empty string.

Regular Sets

Definition: A set of strings over Act is regular if it can be built from

- the empty set \emptyset and the singleton sets $\{\alpha\}$ (for each $\alpha \in$ Act),
- using the operations of union (\cup), concatenation (•), and iteration (*).

$$
\begin{aligned}
S_{1} \cdot S_{2} & \stackrel{\text { def }}{=} \ldots \\
S^{*} & \stackrel{\text { def }}{=} \ldots
\end{aligned}
$$

In regular sets, we write α for $\{\alpha\}$ and ϵ for $\{\epsilon\}$.

Regular Expressions

Definition: The set of regular expressions over Act is generated by the following grammar:

$$
e::=\epsilon|\alpha||e+e| e \cdot e \mid e^{*}
$$

where $\alpha \in$ Act.
In regular expressions, we write $\alpha \beta$ for $\alpha \cdot \beta \ldots$

regular expressions	vs regular sets
$(a+b) c$	$\{a c, b c\}$
$a+b c$	$\{a, b c\}$

Regular Expressions (II)

$$
\begin{aligned}
\left(S_{1} \cdot S_{2}\right) \cdot S_{3} & =S_{1} \cdot\left(S_{2} \cdot S_{3}\right) \\
S \cdot \epsilon & =S \\
S \cdot \emptyset & =\emptyset \\
\left(S_{1}+S_{2}\right) \cdot T & =S_{1} \cdot T+S_{2} \cdot T \\
T \cdot\left(S_{1}+S_{2}\right) & =T \cdot S_{1}+T \cdot S_{2} \\
S \cdot(T \cdot S)^{*} & =(S \cdot T)^{*} \cdot S
\end{aligned}
$$

Note:

The regular set \emptyset means "no path". But: The regular expression ϵ means "empty path".

$$
\emptyset \neq\{\epsilon\}
$$

As an example, compare $\{\alpha \beta\} \cdot\{\epsilon\}$ with $\{\alpha \beta\} \cdot \emptyset$.

Arden's rule

Theorem:

For any sets of strings S and T, the equation

$$
X=S \cdot X+T \quad \text { has } \quad X=S^{*} \cdot T
$$

as a solution.
Moreover, this solution is unique if $\epsilon \notin S$.
Fact: The language \widehat{A} of any finite-state automaton A is regular.

Example Automaton

Determine the language of the previous automaton as the regular expression describing the strings accepted in the initial state.

Write down a set of equations, one equation for each state.

Solve the set of equations ...

Determinism / Nondeterminism

Analyze two automata ...
Exercise in § 2.4 of [Mil99]

Message: Language equivalence is blind for nondeterminism.

In fact, every nondeterministic automaton can be converted into a determinstic that accepts the same language.

The Zen of Black Boxes

- automata as black boxes
- actions as buttons (for interaction)
"What matters of a string s (a sequence of actions) is not whether it drives the automaton into an accepting state (since we cannot detect this by interaction) but whether the automaton is able to perform the sequence s interactively." [Mil99]

Attempt: Consider every state accepting ...

Prefixes

If a string s can be expressed in the form $s_{1} s_{2}$, then s_{1} is a prefix of s.

A language S is prefix-closed if, whenever $s_{1} s_{2} \in S$, then also $s_{1} \in S$.

The prefix-closure of a language S is the larger language $\operatorname{Pref}(S)$ that contains all the prefixes of every string in S. $\operatorname{Pref}(S)$ is the smallest prefix-closed language that includes S.

Tea / Coffee

Reinterpret the previous automata as tea/coffee machines.

Observe the mismatch between
black-box-interaction and accepted languages.
Observe the representation of the mismatch in the equations satisfied by regular languages.

Attempt: Consider any state starting ...

Labeled Transition Systems

Definition:

An LTS $L=(Q, T)$ over an action alphabet Act:

- a set of states $Q=\left\{q_{0}, q_{1} \ldots\right\}$
- a ternary transition relation
$T \subseteq(Q \times$ Act $\times Q)$
A transition $\left(q, \alpha, q^{\prime}\right) \in T$ is also written $q \xrightarrow{\alpha} q^{\prime}$.
If $q \xrightarrow{\alpha_{1}} q_{1} \cdots \xrightarrow{\alpha_{n}} q_{n}$ we call q_{n} a derivative of q.
Transition Graphs are useful ...

Equivalence on LTS

Recall why we are interested in equivalence relations on our model.

When should two LTS (or two states within an LTS) be considered equivalent?

- language equivalence?
- isomorphism ?

Try to interact with them ...
... and observe any possible difference.

Equivalence on LTS (II)

Example: Compare p_{0} and q_{0} in

$$
\begin{aligned}
\{ & \left(p_{0}, a, p_{1}\right),\left(p_{1}, b, p_{2}\right),\left(p_{1}, c, p_{3}\right), \\
& \left.\left(q_{0}, a, q_{1}\right),\left(q_{0}, a, q_{1}^{\prime}\right),\left(q_{1}, b, q_{2}\right),\left(q_{1}^{\prime}, c, q_{3}\right)\right\}
\end{aligned}
$$

Motivate simulation!
Induce simulation of paths
through step-by-step simulation of actions ...

Strong Simulation on LTS

Definition: (learn it by heart!)
Let (Q, T) be an LTS.
Let \mathcal{S} be a binary relation over Q.
Then \mathcal{S} is a strong simulation over (Q, T) if whenever $p \mathcal{S} q$: if $p \xrightarrow{\alpha} p^{\prime}$
then there is $q^{\prime} \in Q$ such that $q \xrightarrow{\alpha} q^{\prime}$ and $p^{\prime} \mathcal{S} q^{\prime}$.
q strongly simulates p
if there is a strong simulation \mathcal{S} such that $p \mathcal{S} q$.

Working with Simulation

- exhibiting a simulation
- checking a simulation
- "generating" a simulation

What changes if we define simulation between two different LTSs instead of on a single one?

Working with Simulation (II)

Example: Find all non-trivial simulations in ...

