TMC Session 11 @ 16/01/2002

U. Nestmann

EPFL-LAMP

Solution: Overtaking Cars

many implementations might be valid ... here's just one proposal

$$\begin{array}{ccc} \operatorname{Car}\langle\, x,b,f\,\rangle & \stackrel{\mathrm{def}}{=} \\ \operatorname{Fast}\langle\, x,b,f\,\rangle & \stackrel{\mathrm{def}}{=} \end{array}$$

$$\operatorname{Slow}\langle\, x,b,f,b'\,\rangle & \stackrel{\mathrm{def}}{=} \end{array}$$

Buffers in New Clothes...

$$B(i,o) \stackrel{\text{def}}{=} i(x).C\langle x,i,o\rangle$$

$$C(x,i,o) \stackrel{\text{def}}{=} \overline{o}\langle x\rangle.B\langle i,o\rangle$$

$$+ i(y).(C\langle y,i,o\rangle \cap C\langle x,i,o\rangle)$$

where

$$X\langle i, o \rangle \cap Y\langle i, o \rangle \stackrel{\text{def}}{=}$$

$$(\boldsymbol{\nu}m) (X\langle i, o \rangle \{^{m}/_{\!o}\} \mid Y\langle i, o \rangle \{^{m}/_{\!i}\})$$

- Observe how much nicer value-passing is :-)
- Follow the sequence $\stackrel{i1}{\longrightarrow}\stackrel{i2}{\longrightarrow}\stackrel{\bar{o}2}{\longrightarrow}\stackrel{\cdots}{\longrightarrow}$

Elastic Buffers

Make the buffer elastic, i.e., make empty cells disappear!

Several design decisions need to be taken concerning the question *when* an empty cell should cut itself out of a chain and die.

- if empty cell is next to a full/empty cell?
- if empty cell is left/right to a cell?
- should it be allowed (suicide) or forced (murder) to die?

Elastic Buffers (II)

$$B(i,l,o,r) \stackrel{\text{def}}{=} i(x).C\langle x,i,l,o,r \rangle + \dots C(x,i,l,o,r) \stackrel{\text{def}}{=} \overline{o}\langle x \rangle.B\langle i,l,o,r \rangle + i(y).(C\langle y,i,l,o,r \rangle \cap C\langle x,i,l,o,r \rangle) + \dots$$

where

$$X\langle i, l, o, r \rangle \cap Y\langle i, l, o, r \rangle \stackrel{\text{def}}{=}$$

. . .

Syntax Conventions

$$\mathcal{N} \text{ names } a,b,c\ldots,x,y,z \\ \mathcal{A} \text{ actions } \pi ::= x(y) \quad | \quad \overline{x}\langle y\rangle \quad | \quad \tau$$

- finite sequences \vec{a} . . .
- parametric processes with defining equations are modeled through a more primitive notion of replication and name-passing

Syntax / Grammar

Definition: The set \mathcal{P} of π -calculus proc. exp. is defined (precisely) by the following syntax:

$$P ::= M \quad | \quad P|P \quad | \quad (\boldsymbol{\nu}a)P \quad | \quad !P$$

$$M ::= \mathbf{0} \quad | \quad \pi.P \quad | \quad M+M$$

We use P, Q, P_i to stand for process expressions.

- $(\nu ab) P$ abbreviates $(\nu a) (\nu b) P$
- $\sum_{i \in \{1..n\}} \pi_i . P_i$ abbreviates $\pi_1 . P_1 + \ldots + \pi_n . P_n$

Bound and Free Names

- $(\nu x) P$ and y(x).P bind x in P
- x occurs **bound** in P, if it occurs in a subterm $(\nu x) Q$ or y(x).P of P
- x occurs **free** in P, if it occurs without enclosing $(\nu x) Q$ or y(x).P in P
- Note the use of parentheses (round brackets).
- Define fn(P) and bn(P) inductively on \mathcal{P} (sets of free/bound names of P) . . .

Reaction (Example 9.2, [Mil99])

$$P \stackrel{\text{def}}{=} (\boldsymbol{\nu}z) ((\overline{x}\langle y\rangle + z(w).\overline{w}\langle y\rangle) | x(u).\overline{u}\langle v\rangle | \overline{x}\langle z\rangle)$$

$$P_1 \stackrel{\text{def}}{=}$$

$$P_2 \stackrel{\text{def}}{=}$$

$$P_3 \stackrel{\text{def}}{=}$$

Exercise 9.3:

Write down a process Q such that $Q|P_1$ has a redex, but $Q|P_2$ has no redex except that in P_2 .

Process Contexts

<u>Definition:</u> A process context $C[\cdot]$ is (precisely) defined by the following syntax:

The **elementary contexts** are

$$\pi.[\cdot] + M, M + \pi.[\cdot], (\boldsymbol{\nu}a)[\cdot], [\cdot]|P, P|[\cdot], [![\cdot]].$$

Process Congruence

Definition:

Let \cong be an equivalence relation over \mathcal{P} . Then \cong is said to be a **process congruence**, if it is preserved by all elementary contexts; i.e., if $P \cong Q$, then

$$\pi.P + M \cong \pi.Q + M$$
 $P|R \cong Q|R$ $M + \pi.P \cong M + \pi.Q$ $R|P \cong R|Q$ $(\nu a) P \cong (\nu a) Q$ $!P \cong !Q$.

Process congruence (II)

Proposition:

An arbitrary equivalence relation \cong is a process congruence if and only if, for *all* contexts $C[\cdot]$, $P\cong Q$ implies $C[P]\cong C[Q]$.

Note:

For proving that an equivalence relation is a congruence, the elementary contexts suffice.

Structural Congruence

Definition: Structural congruence, written \equiv , is the (smallest) process congruence over \mathcal{P} determined by the following equations.

- 1. $=_{\alpha}$ Now for two binders!
- 2. commutative monoids $(\mathcal{P}, +, \mathbf{0})$ and $(\mathcal{P}, |, \mathbf{0})$
- 3. $(\boldsymbol{\nu}a) (P|Q) \equiv P|(\boldsymbol{\nu}a) Q$, if $a \notin \operatorname{fn}(P)$ $(\boldsymbol{\nu}a) \mathbf{0} \equiv \mathbf{0}$, $(\boldsymbol{\nu}ab) P \equiv (\boldsymbol{\nu}ba) P$
- **4.** $P = P \mid P \mid P$

Structural Congruence (II)

reflexive-symmetric-transitive context closure (of a set of equations)

$$\frac{P=Q}{P=P} \qquad \frac{P=Q}{Q=P} \qquad \frac{P=Q}{P=R}$$

$$\frac{P = Q}{C[P] = C[Q]} \text{ for arbitrary "process context" } C[\cdot]$$

allows equational reasoning, i.e. any number of applications, in either direction, to any subterm

Standard Forms

Definition:

A process expression

$$(\boldsymbol{\nu}\vec{a}) (M_1|\cdots|M_m|!Q_1|\cdots|!Q_n)$$

is in **standard form** if each M_i is a non-empty sum, and each Q_j is itself in standard form.

If m=n=0 then the form is 0.

If \vec{a} is empty then there is no restriction.

Theorem: Every process is structurally congruent to a standard form.

Reaction

Definition: \rightarrow over \mathcal{P} is generated by:

TAU:
$$\tau.P + M \rightarrow P$$

REACT:
$$\overline{y}\langle z\rangle.P+M\mid y(x).Q+N \to \{^z/_x\}P\mid Q$$

PAR:
$$\frac{P \to P'}{P|Q \to P'|Q} \qquad \text{RES: } \frac{P \to P'}{(\pmb{\nu}a)\,P \to (\pmb{\nu}a)\,P'}$$

STRUCT:
$$\frac{P \to P'}{Q \to Q'} \text{ if } P \equiv Q \text{ and } P' \equiv Q'$$

Reaction (Exercise 9.18)

Exhibit the redex in

$$x(z).\overline{y}\langle z\rangle \mid !(\boldsymbol{\nu}y)\,\overline{x}\langle y\rangle.Q$$

and give the result of the reaction.

Mobility? "Flowgraphs"!

$$P = \overline{x}\langle z \rangle.P'$$

$$Q = x(y).Q'$$

$$R = \dots z \dots$$

Assume that $z \notin \operatorname{fn}(P')$.

Depict the transition

$$(\boldsymbol{\nu}z)(P|R)|Q \rightarrow P'|(\boldsymbol{\nu}z)(R|Q')$$

as a flow graph (with scopes) and verify it using the reaction and congruence rules.

Polyadism

$$\begin{bmatrix} \overline{y}\langle \vec{z}\rangle.P \end{bmatrix} \stackrel{\text{def}}{=} \\
 \begin{bmatrix} y(\vec{x}).P \end{bmatrix} \stackrel{\text{def}}{=} \\
 \begin{bmatrix} \overline{y}\langle \vec{z}\rangle.P \end{bmatrix} \stackrel{\text{def}}{=} \\
 \begin{bmatrix} y(\vec{x}).P \end{bmatrix} \stackrel{\text{def}}{=} \\
 \end{bmatrix}$$

Recursion

$$A(\vec{x}) \stackrel{\text{def}}{=} Q_A$$
, where $Q_A \stackrel{\text{def}}{=} \cdots A \langle \vec{u} \rangle \cdots A \langle \vec{v} \rangle \cdots$ can be used in: $P \stackrel{\text{def}}{=} \cdots A \langle \vec{y} \rangle \cdots A \langle \vec{z} \rangle \cdots$

can be modeled through:

- 1. invent a to stand for A
- 2. for any R, let \widehat{R} denote the result of replacing any call $A\langle\,\vec{w}\,\rangle$ by $\overline{a}\langle\vec{w}\rangle$
- 3. replace P by

$$(\boldsymbol{\nu}a) (\widehat{P} \mid \boldsymbol{!} a(\vec{x}).\widehat{Q_A})$$