TMC Session 11 @ 16/01/2002
 U. Nestmann

EPFL-LAMP

Solution: Overtaking Cars

many implementations might be valid ...
... here's just one proposal
$\operatorname{Car}\langle x, b, f\rangle \quad \stackrel{\text { def }}{=}$
Fast $\langle x, b, f\rangle \stackrel{\text { def }}{=}$
$\operatorname{Slow}\left\langle x, b, f, b^{\prime}\right\rangle \quad \stackrel{\text { def }}{=}$

Buffers in New Clothes

$$
\begin{array}{rcc}
B(i, o) & \stackrel{\text { def }}{=} & i(x) \cdot C\langle x, i, o\rangle \\
C(x, i, o) \stackrel{\text { def }}{=} & \bar{o}\langle x\rangle \cdot B\langle i, o\rangle \\
& +i(y) \cdot(C\langle y, i, o\rangle \frown C\langle x, i, o\rangle)
\end{array}
$$

where

$$
\begin{aligned}
& X\langle i, o\rangle \frown Y\langle i, o\rangle \stackrel{\text { def }}{=} \\
& \quad(\boldsymbol{\nu} m)\left(X\langle i, o\rangle\left\{{ }^{m} / o\right\} \mid Y\langle i, o\rangle\{m / i\}\right)
\end{aligned}
$$

- Observe how much nicer value-passing is :-)
- Follow the sequence $\xrightarrow{i 1} \xrightarrow{i 2} \xrightarrow{\bar{o} 2} \xrightarrow{\cdots}$

Elastic Buffers

Make the buffer elastic,
i.e., make empty cells disappear!

Several design decisions need to be taken concerning the question when an empty cell should cut itself out of a chain and die.

- if empty cell is next to a full/empty cell?
- if empty cell is left/right to a cell?
- should it be allowed (suicide) or forced (murder) to die?

Elastic Buffers (II)

$$
\begin{aligned}
B(i, l, o, r) & \stackrel{\text { def }}{=} i(x) \cdot C\langle x, i, l, o, r\rangle \\
& +\cdots \\
C(x, i, l, o, r) & \stackrel{\text { def }}{=} \bar{o}\langle x\rangle \cdot B\langle i, l, o, r\rangle \\
& +i(y) \cdot(C\langle y, i, l, o, r\rangle \frown C\langle x, i, l, o, r\rangle) \\
& +\ldots
\end{aligned}
$$

where

$$
X\langle i, l, o, r\rangle \frown Y\langle i, l, o, r\rangle \stackrel{\text { def }}{=}
$$

$$
\cdots
$$

Syntax Conventions

\mathcal{N} names $a, b, c \ldots, x, y, z$
\mathcal{A} actions $\pi \quad::=x(y)|\quad \bar{x}\langle y\rangle| \tau$

- finite sequences \vec{a}...
- parametric processes with defining equations are modeled through a more primitive notion of replication and name-passing

Syntax / Grammar

Definition: The set \mathcal{P} of π-calculus proc. exp. is defined (precisely) by the following syntax:

$$
\begin{array}{c|r|r|l|l}
P & ::=M & P \mid P & (\boldsymbol{\nu} a) P & !P \\
M & ::=\mathbf{0} & \mid \pi \cdot P & & M+M
\end{array}
$$

We use P, Q, P_{i} to stand for process expressions.

- $(\boldsymbol{\nu} a b) P$ abbreviates $(\boldsymbol{\nu} a)(\boldsymbol{\nu} b) P$
- $\sum_{i \in\{1 . . n\}} \pi_{i} \cdot P_{i}$ abbreviates $\pi_{1} \cdot P_{1}+\ldots+\pi_{n} \cdot P_{n}$

Bound and Free Names

- $(\boldsymbol{\nu} x) P$ and $y(x) . P$ bind x in P
- x occurs bound in P, if it occurs in a subterm $(\boldsymbol{\nu} x) Q$ or $y(x) . P$ of P
- x occurs free in P, if it occurs without enclosing $(\boldsymbol{\nu} x) Q$ or $y(x) . P$ in P
- Note the use of parentheses (round brackets).
- Define $\mathrm{fn}(P)$ and $\operatorname{bn}(P)$ inductively on \mathcal{P} (sets of free/bound names of P) ...

Reaction (Example 9.2, [Mil99])

$$
\begin{aligned}
& P \stackrel{\text { def }}{=}(\boldsymbol{\nu} z)((\bar{x}\langle y\rangle+z(w) \cdot \bar{w}\langle y\rangle)|x(u) \cdot \bar{u}\langle v\rangle| \bar{x}\langle z\rangle) \\
& P_{1} \stackrel{\text { def }}{=} \\
& P_{2} \stackrel{\text { def }}{=} \\
& P_{3} \stackrel{\text { def }}{=}
\end{aligned}
$$

Exercise 9.3:

Write down a process Q such that $Q \mid P_{1}$ has a redex, but $Q \mid P_{2}$ has no redex except that in P_{2}.

Process Contexts

Definition: A process context $C[\cdot]$ is (precisely)

 defined by the following syntax:$$
\begin{aligned}
& C[\cdot] \quad:=\quad[\cdot] \quad \pi \cdot C[\cdot]+M \quad \mid \quad M+\pi \cdot C[\cdot] \\
& |\quad(\boldsymbol{\nu} a) C[\cdot] \quad C[\cdot]| P \quad|\quad P| C[\cdot] \\
& !C[\cdot]
\end{aligned}
$$

The elementary contexts are
$\pi .[\cdot]+M, M+\pi .[\cdot],(\boldsymbol{\nu} a)[\cdot],[\cdot]|P, P|[\cdot],![\cdot]$.

Process Congruence

Definition:

Let \cong be an equivalence relation over \mathcal{P}.
Then \cong is said to be a process congruence, if it is preserved by all elementary contexts; i.e., if $P \cong Q$, then

$$
\begin{array}{rlrl}
\pi \cdot P+M & \cong \pi \cdot Q+M & P|R \cong Q| R \\
M+\pi \cdot P & \cong M+\pi \cdot Q & R|P \cong R| Q \\
(\boldsymbol{\nu} a) P & \cong(\boldsymbol{\nu} a) Q & & !P \cong!Q .
\end{array}
$$

Process congruence (II)

Proposition:

An arbitrary equivalence relation \cong is a process congruence if and only if, for all contexts $C[\cdot]$, $P \cong Q$ implies $C[P] \cong C[Q]$.

Note:

For proving that an equivalence relation is a congruence, the elementary contexts suffice.

Structural Congruence

Definition: Structural congruence, written \equiv, is the (smallest) process congruence over \mathcal{P} determined by the following equations.

1. $={ }_{\alpha}$ Now for two binders!
2. commutative monoids $(\mathcal{P},+, \mathbf{0})$ and $(\mathcal{P}, \mid, \mathbf{0})$
3. $(\boldsymbol{\nu} a)(P \mid Q) \equiv P \mid(\boldsymbol{\nu} a) Q$, if $a \notin \mathrm{fn}(P)$
$(\boldsymbol{\nu} a) \mathbf{0} \equiv \mathbf{0},(\boldsymbol{\nu} a b) P \equiv(\boldsymbol{\nu} b a) P$
4. $!P \equiv P \mid!P$

Structural Congruence (II)

reflexive-symmetric-transitive context closure (of a set of equations)

$$
\begin{aligned}
& \frac{P=Q}{P=P} \quad \frac{P=Q \quad Q=R}{P=P} \\
& \frac{P=Q}{C[P]=C[Q]} \text { FOR ARBITRARY "PROCESS CONTEXT" } C[\cdot]
\end{aligned}
$$

allows equational reasoning, i.e. any number of applications, in either direction, to any subterm

Standard Forms

Definition:

A process expression

$$
(\boldsymbol{\nu} \vec{a})\left(M_{1}|\cdots| M_{m}\left|!Q_{1}\right| \cdots \mid!Q_{n}\right)
$$

is in standard form if each M_{i} is a non-empty sum, and each Q_{j} is itself in standard form.
If $m=n=0$ then the form is $\mathbf{0}$.
If \vec{a} is empty then there is no restriction.
Theorem: Every process is structurally congruent to a standard form.

Reaction

Definition: \rightarrow over \mathcal{P} is generated by:

$$
\text { TAU: } \tau . P+M \rightarrow P
$$

$$
\begin{aligned}
& \text { ReAct: } \bar{y}\langle z\rangle . P+M\left|y(x) \cdot Q+N \rightarrow\left\{{ }^{z} z x\right\} P\right| Q \\
& \text { PAR: } \frac{P \rightarrow P^{\prime}}{P\left|Q \rightarrow P^{\prime}\right| Q} \quad \text { RES: } \frac{P \rightarrow P^{\prime}}{(\boldsymbol{\nu} a) P \rightarrow(\boldsymbol{\nu} a) P^{\prime}} \\
& \quad \text { StRUCT: } \frac{P \rightarrow P^{\prime}}{Q \rightarrow Q^{\prime}} \text { IF } P \equiv Q \text { AND } P^{\prime} \equiv Q^{\prime}
\end{aligned}
$$

Reaction (Exercise 9.18)

Exhibit the redex in

$$
x(z) . \bar{y}\langle z\rangle \mid \boldsymbol{!}(\boldsymbol{\nu} y) \bar{x}\langle y\rangle . Q
$$

and give the result of the reaction.

Mobility ? "Flowgraphs"!

$$
\begin{aligned}
& P=\bar{x}\langle z\rangle \cdot P^{\prime} \\
& Q=x(y) \cdot Q^{\prime} \\
& R=\ldots z \ldots
\end{aligned}
$$

Assume that $z \notin \mathrm{fn}\left(P^{\prime}\right)$.

Depict the transition

$$
(\boldsymbol{\nu} z)(P \mid R)\left|Q \rightarrow P^{\prime}\right|(\boldsymbol{\nu} z)\left(R \mid Q^{\prime}\right)
$$

as a flow graph (with scopes) and verify it using the reaction and congruence rules.

Polyadism

$$
\begin{aligned}
& \llbracket \bar{y}\langle\vec{z}\rangle \cdot P \rrbracket \stackrel{\text { def }}{=} \\
& \llbracket y(\vec{x}) \cdot P \rrbracket \stackrel{\text { def }}{=}
\end{aligned}
$$

$$
\llbracket \bar{y}\langle\vec{z}\rangle \cdot P \rrbracket \stackrel{\text { def }}{=}
$$

$$
\llbracket y(\vec{x}) \cdot P \rrbracket \stackrel{\text { def }}{=}
$$

Recursion

$A(\vec{x}) \stackrel{\text { def }}{=} Q_{A}$, where $Q_{A} \stackrel{\text { def }}{=} \cdots A\langle\vec{u}\rangle \cdots A\langle\vec{v}\rangle \cdots$ can be used in: $P \stackrel{\text { def }}{=} \cdots A\langle\vec{y}\rangle \cdots A\langle\vec{z}\rangle \cdots$
can be modeled through:

1. invent a to stand for A
2. for any R, let \widehat{R} denote the result of replacing any call $A\langle\vec{w}\rangle$ by $\bar{a}\langle\vec{w}\rangle$
3. replace P by

$$
(\boldsymbol{\nu} a)\left(\widehat{P} \mid!a(\vec{x}) \cdot \widehat{Q_{A}}\right)
$$

