TMC Session 11 @ 16/01/2002

U. Nestmann

EPFL-LAMP

_ 11.tex — TMC Session 11 @ 16/01/2002 — U. Nestmann — 16/1/2002 — 12:57 — p.1/20

Solution: Overtaking Cars

many implementations might be valid . ..
. here’s just one proposal

car(z,b, f)

Fast(z,b, [) i

def

Slow(x,b, f,b') =

Buffers in New Clothes . ..

B(1i,0) ot i(x).C{x,1,0)
C(x,i,0) < o(z).B(i,0)
+ i(y).(C(y,i,0) " C({x,4,0))
where
X{i,0) " Y{io) &

(vm) (X(i,0){"fo} | Y (i,0){"/i})

» Observe how much nicer value-passing is :-)

11 12 02
 Follow the sequence — — —

Elastic Buffers

Make the buffer elastic,
l.e., make empty cells disappear!

Several design decisions need to be taken
concerning the question when an empty cell
should cut itself out of a chain and die.

« If empty cell is next to a full/empty cell?
« If empty cell is left/right to a cell?

 should it be allowed (suicide)
or forced (murder) to die?

Elastic Buffers (I1)

B(i,l,0,1) “ i(x).C{x,1,l,0,7)

© 5(x).Bi, 10,1
+ i(y).(C{y,i,l,0,r) " C{x,i,l,0,7))

C(x,i,l,0,1)

where
X{(i,lo,r) " Y{(t,l,0,1) def

_ 11.tex — TMC Session 11 @ 16/01/2002 — U. Nestmann — 16/1/2002 — 12:57 — p.5/20

Syntax Conventions

N names a,b,c....x,9, 2
A actions m = z(y) | T(y) | 7

- finite sequences a . ..

» parametric processes with defining equations
are modeled through a more primitive notion
of replication and name-passing

Syntax / Grammar

Definition: The set P of w-calculus proc. exp. Is
defined (precisely) by the following syntax:

Pu:=M | P[P | (va)P | ['P
M:=0 | [=.P] | M+M

We use P, (), P; to stand for process expressions.

* (vab) P abbreviates (va) (vb) P
° Zie{l..n} ;. P, abbreviates m{. P, + ... + m,.P,

Bound and Free Names

* (vx) P|land y(x).P|bind z in P

» 2 occurs bound Iin P, If It occurs
in a subterm (vz) Q |or y(x).P|of P

x occurs free in P, If It occurs
without enclosing (vx) Q |or y(x).P|in P

» Note the use of parentheses (round brackets).

- Define fn(P) and bn(P) inductively on P
(sets of free/bound names of P) ...

Reaction (Example 9.2, [Mil99])

Exercise 9.3:
Write down a process () such that Q)| P; has a
redex, but Q| P, has no redex except that in A.

Process Contexts

Definition: A process context C'|-] is (precisely)
defined by the following syntax:

Cl] == [‘ r.Cl|+ M ‘ M + 7.C|]
(va)CLl | CLIP | PIC[]
1|

The elementary contexts are
m]+ M, M+, (va)[-], []|P, P[], [[]}

Process Congruence

Definition:

Let = be an equivalence relation over P.
Then = Is said to be a process congruence,
If it Is preserved by all elementary contexts;
l.e., If P = (), then

TP+ M = 7.Q+ M PR = QIR
M+nP =2 M+7.Q R|P = R|Q
(va) P = (va)@Q 'P = 1Q

Process congruence (I1)

Proposition:

An arbitrary equivalence relation = is a process
congruence if and only if, for all contexts C'-],
P = @ implies C|P] = C|Q).

Note:
For proving that an equivalence relation is a
congruence, the elementary contexts suffice.

Structural Congruence

Definition: Structural congruence, written =, IS
the (smallest) process congruence over P
determined by the following equations.

1. =, |Now for two binders!

2. commutative monoids (P, +,0) and (P, |, 0)

3. (va) (P|Q) = P|(va) Q, if a & fn(P)
(va)0 =0, (vab) P = (vba) P

4. 'P=P|!P

Structural Congruence (1)

reflexive-symmetric-transitive context closure
(of a set of equations)

P=Pr Q=P P=R
- Cl]
FOR ARBITRARY “PROCESS CONTEXT" .
Clr] = ClQ)]

allows equational reasoning, i.e. any number of
applications, in either direction, to any subterm

Standard Forms

Definition:

A process expression

IS In standard form if each M, iIs a non-empty
sum, and each @), Is itself in standard form.

If m = n = 0 then the form is 0.
If a Is empty then there Is no restriction.

Theorem: Every process Is structurally
congruent to a standard form.

Definition: — over P Is generated by:

v T.P+M — P

REACT: §<Z>.P—|—M ‘ y(CE)Q—I—N — {Z/g;}P ‘ @,

P — P P — P
PAR: RES:
PIQ — P'[Q (va) P — (va) P’
P — P
STRUCT: FP=QanD P =

_ 100 THE S 18 16012062 U Nesmann - 1612002 1257 16720

Reaction (Exercise 9.18)

Exhibit the redex In
x(2).y(z) | (vy) T(y).Q

and give the result of the reaction.

Mobility ? “Flowgraphs” !

Assume that z ¢ fn(FP’).

Depict the transition

(vz)(PIR)|Q — P'| (vz) (R|Q")
as a flow graph (with scopes) and verify it using
the reaction and congruence rules.

Polyadism

[5(5).P] =

y(7).P] =

<

[7(2).P] =
y(7).P] <

_ 11.tex — TMC Session 11 @ 16/01/2002 — U. Nestmann — 16/1/2002 — 12:57 — p.19/20

Recursion

A(T) o Q 4, Where Q 4 def AT AT

canbe used in: P & Ay A

can be modeled through:
1. invent q to stand for A

2. for any R, let R denote the result of replacing
any call A(w) by a(w)

3. replace P by

	 Solution: Overtaking Cars
	 Buffers in New Clothes etc
	 Elastic Buffers
	 Elastic Buffers (II)

	 Syntax Conventions
	 Syntax / Grammar
	 Bound and Free Names
	 Reaction (Example 9.2, [Mil99])
	 Process Contexts
	 Process Congruence
	 Process congruence (II)
	 Structural Congruence
	 Structural Congruence (II)

	 Standard Forms
	 Reaction
	 Reaction (Exercise 9.18)

	 Mobility ? ``Flowgraphs'' !
	 Polyadism
	 Recursion

