
Extended Example: Discrete Event Simulation

1 Introduction

This chapter shows by way of an extended example how objects and higher-order functions
can be combined in interesting ways. The task is to design and implement a digital circuit
simulator. This task can be decomposed into several subproblems, each of which is interesting
individually: First, you’ll be presented a simple but general framework for discrete simulation.
The main task of this framework is to keep track of simulated time. Second, you’ll learn how
to discrete simulation programs are are structured and built. The idea of such simulations is
to model physical objects by simulated objects, and to use the simulation framework to model
physical time. Finally, you’ll see a little domain specific language for digital circuits. The
definition of this language highlights a general method how domain-specific languages can be
defined in a host language like Scala.

The basic example is taken from the classic textbook “Structure and Interpretation of Com-
puter Programs” by Abelson and Sussman [?]. What’s different here is that the implementa-
tion language is Scala instead of Scheme, and that the different aspects of the example are
structured into four software layers: One for the simulation framework, another for the basic
circuit simulation package, a third layer for a library of user-defined circuits and the last layer
for each simulated circuit itself. Each layer is expressed as a class, and more specific layers
inherit from more general ones.

2 A language for digital circuits

Let’s start with a little language to describe digital circuits. A digital circuit is built fromwires
and function boxes. Wires carrysignalswhich are transformed by function boxes. Signals
will be represented by booleans:true for signal-on andfalse for signal-off.

There are three basic function boxes (or:gates):

• An inverter, which negates its signal

• An and-gate, which sets its output to the conjunction of its input.

• An or-gate, which sets its output to the disjunction of its input.

These gates are sufficient to build all other function boxes. Gates havedelays, so an output of
a gate will change only some time after its inputs change.

We describe the elements of a digital circuit by the following set of Scala classes and
functions.

First, there is a classWire for wires. We can construct wires as follows.

1

val a = new Wire
val b = new Wire
val c = new Wire

or, equivalent but shorter:

val a, b, c = new Wire

Second, there are procedures

def inverter(input : Wire, output : Wire)
def andGate(a1 : Wire, a2 : Wire, output : Wire)
def orGate(o1 : Wire, o2 : Wire, output : Wire)

which “make” the basic gates we need. What’s unusual, given the functional emphasis of
Scala, is that these procedures construct the gates as a side-effect, instead of returning the
constructed gates as a result.

More complicated function boxes can now be built from these. For instance, the following
method constructs a half-adder, which takes two inputsa andb and produces a sums defined
by s = (a + b) % 2 and a carryc defined byc = (a + b) / 2.

def halfAdder(a : Wire, b : Wire, s : Wire, c : Wire) {

val d, e = new Wire
orGate(a, b, d)
andGate(a, b, c)
inverter(c, e)
andGate(d, e, s)

}

A picture of this half-adder is shown in Figure??.
Note thathalfAdder is a parameterized function box just like the three methods which

construct the primitive gates. You can use thehalfAdder method to construct in turn more
complicated circuits. For instance, the following defines a full one bit adder, (shown in
Figure ??) which takes two inputsa and b as well as a carry-incin and which produces
a sum output defined bysum = (a + b + cin) % 2 and a carry-out output defined by
cout = (a + b + cin) / 2.

def fullAdder(a : Wire, b : Wire, cin : Wire, sum : Wire, cout : Wire) {

val s, c1, c2 = new Wire
halfAdder(a, cin, s, c1)
halfAdder(b, s, sum, c2)
orGate(c1, c2, cout)

}

ClassWire and functionsinverter, andGate, andorGate represent a little language in which
users can define digital circuits. The implementations of this class and these functions are
based on a simple and general API for discrete event simulation. This API will be studied
next.

2

3 The Simulation API

The simulation API is given by a classSimulation in packagesimulator. Concrete simu-
lation libraries will inherit this class and augment it with domain-specific functionality. The
different elements of theSimulation class are presented in the following.

package simulator
class Simulation {

Discrete event simulation performs user-definedactionsat specifiedtimes. The actions, which
are are defined by concrete simulation subclasses, all share a common type:

type Action = () ⇒ unit

The definition above definesAction to be an alias of the type of procedures that take an empty
parameter list and that returnunit.

The time at which an action is performed is simulated time; it is has nothing to do the
actual “wall-clock” time. Simulated times are represented simply as integers. The current
simulated time is kept in a private variable

private var curtime : int = 0

The variable has a public accessor method which retrieves the current time:

def currentTime : int = curtime

As usual, the combination of private variable with public accessor is used to make sure that
the current time cannot be modified outside theSimulation class.

An action which is to be executed at a specified time is called awork-item; it is an instance
of the following class:

case class WorkItem(time : int, action : Action)

Note the difference between the type definition ofAction and the class definition ofWorkItem.
A class definition defines a new type with some specified parents and components. By con-
trast, a type definition does not define a new type; it simply introruces a new name for an
existing type.

TheSimulation class keeps anagendaof all remaining work-items that are not yet exe-
cuted. The work-items are sorted by the simulated time at which they have to be run:

private var agenda : List[WorkItem] = List()

The only way to add a work item to the agenda is with the following method:

def afterDelay(delay : int)(block : ⇒ unit) {

agenda = insert(agenda, WorkItem(currentTime + delay, () ⇒ block))
}

A call like afterDelay(delay} { count += 1 } creates a new work-item which will exe-
cuted at simulated timecurrentTime + delay. The code to be executed is contained in the
method’s second argument. The formal parameter for this argument has type⇒ unit, i.e. it

3

is a computation of typeunit which is passed by-name. Recall that call-by-name parameters
are not evaluated when passed to a method. So in the call abovecount would be incremented
only once the simulation framework calls the action which it stored in a work-item.

The created work-item is then inserted into the agenda. This is done by theinsert
method, which maintains the invariant that the agenda is time-sorted:

private def insert(ag : List[WorkItem], item : WorkItem): List[WorkItem] =
if (ag.isEmpty | | item.time < ag.head.time) item :: ag
else ag.head :: insert(ag.tail, item)

The heart of theSimulation class is defined by therun method.

def run() {

afterDelay(0) {

Console.println("∗∗∗ simulation started, time = "+currentTime+" ∗∗∗")
}

while (!agenda.isEmpty) next()
}

The method repeatedly takes the front item in the agenda and executes it. until there are no
more items to execute. This step is performed by calling thenext method, which is defined
as follows.

private def next() {

agenda match {

case item :: rest ⇒
agenda = rest
curtime = item.time
item.action()

}

}

Thenext method decomposes the current agenda with a pattern match into a front itemitem
and a remaining list of work-itemsrest. It removes the front item from the current agenda,
sets the simulated timecurtime to the work-item’s time, and executes the work-item’s action.

That’s it. This seems surprisingly little code for a simulation framework. One concern
you might have is how interesting simulations can be supported by this framework, if all it
does is execute a list of work-items? In fact the power of the simulation framework comes
from the fact that actions stored in work-items can themselves install further work-items into
the agenda when they are executed. That makes it possible to have long-running simulations
evolve from simple beginnings.

Missing cases and the @unchecked annotation

Note thatnext can be called only if the agenda is non-empty. There’s no case for an empty
list, so you would get aMatchError exception if you tried to runnext on an empty agenda.

In fact, the Scala compiler will warn you that you missed one of the possible patterns for
a list:

4

Simulator.scala :19 : warning : match is not exhaustive!
missing combination Nil

agenda match {

ˆ
one warning found

In this case, the missing case is intentional, so you want to disable the warning. You can do
this by adding an@unchecked annotation to the selector expression of the pattern match:

private def next() {

(agenda : @unchecked) match {

case item :: rest ⇒
agenda = rest
curtime = item.time
item.action()

}

Annotations are written as in Java; they start will an@-sign, which is followed by an identifier
and possibly some arguments. What’s new is that Scala lets you annotate not just definitions,
but also types and expressions.

4 Circuit Simulation

The next step is to use the simulation framework to implement the domain-specific language
for circuits. Recall that this DSL consists of a class for wires and methods that create and-
gates, or-gates, and inverters. These are all contained in a classBasicCircuitSimulation
which extends the simulation framework. Their implementations are presented in the follow-
ing.

abstract class BasicCircuitSimulation extends Simulation {

The Wire Class

A wire needs to support three basic actions.

getSignal : boolean returns the current signal on the wire.

setSignal(sig : boolean) sets the wire’s signal tosig.

addAction(p : Action) attaches the specified procedurep to theactionsof the wire.
The idea is that all action procedures attached to some wire will be executed every
time the signal of the wire changes. Typically actions are added to a wire by the gates
connected it. An action is also executed once at the time it is added to a wire.

Here is an implementation of theWire class:

5

class Wire {

private var sigVal = false
private var actions : List[Action] = List()
def getSignal = sigVal
def setSignal(s : boolean) =

if (s != sigVal) {

sigVal = s
actions foreach (_ ())

}

def addAction(a : Action) = {

actions = a :: actions; a()
}

}

Two private variables make up the state of a wire. The variablesigVal represents the current
signal, and the variableactions represents the action procedures currently attached to the
wire. The only interesting method implementation is the one forsetSignal: When the signal
of a wire changes, the new value is stored in the variablesigVal. Furthermore, all actions at-
tached to a wire are executed. Note the shorthand syntax for doing this:actions foreach (_ ())
applies the closure(_ ()) to each element in theactions list. The closure itself is a shorthand
for (f ⇒ f ()), i.e. it takes a function (let’s name itf) and applies it to the empty parameter
list.

Gate delays

Gate delays are specified by three abstract value definitions.

val InverterDelay : int
val andgatedelay : int
val orgatedelay : int

Particular simulations have to give concrete definitions of these delays (see below).

The Inverter Class

The only effect of creating an inverter is that an action is installed on its input wire. This
action is invoked everytime the signal on the input changes. It’s effect is that the value of
the inverter’s output value is set (viasetSignal) to the inverse of its input value. However,
since inverter gates have delays, this change should take effect onlyInverterDelay units of
simulated time after the input value has changed and the action was executed. This suggests
the following implementation.

def inverter(input : Wire, output : Wire) = {

def invertAction() {

val inputSig = input.getSignal
afterDelay(InverterDelay) {

output setSignal !inputSig

6

}

}

input addAction invertAction

Note that the implementation uses theafterDelay method of the simulation framework to
create a new work-item that’s going to be executed in the future.

The And-Gate Class

And-gates are implemented analogously to inverters. The action of anandGate is to output
the conjunction of its input signals. This should happen atAndGateDelay simulated time units
after any one of its two inputs changes. Hence, the following implementation:

def andGate(a1 : Wire, a2 : Wire, output : Wire) = {

def andAction() = {

val a1Sig = a1.getSignal
val a2Sig = a2.getSignal
afterDelay(AndGateDelay) {

output setSignal (a1Sig & a2Sig)
}

}

a1 addAction andAction
a2 addAction andAction

}

Note that the output has to be recomputed if either one of the input wires changes. That’s why
the sameandAction is installed on each of the two input wiresa1 anda2.

Exercise: Write the implementation oforGate.

Exercise: Another way is to define an or-gate by a combination of inverters and and gates.
Define a functionorGate in terms ofandGate andinverter. What is the delay time of this
function?

Simulation output

To run the simulator, you still need a way to inspect changes of signals on wires. To this
purpose, it’s useful to add aprobe method, which simulates the action of putting a probe on a
wire.

def probe(name : String, wire : Wire) {

def probeAction() {

println(name+" "+currentTime+" new−value = "+wire.getSignal)
}

wire addAction probeAction
}

} // end BasicCircuitSimulation

7

The effect of theprobe procedure is to install aprobeAction on a given wire. As usual, the
installed action is executed everytime the wire’s signal changes. In this case it simply prints
the name of the wire (which is passed as first parameter toprobe), as well as the current
simulated time and the wire’s new value.

Running the simulator

After these preparations it’s time to see the simulator in action. To define a concrete simu-
lation, you need to inherit from a simulation framework class. To see something interesting,
let’s assume there is a classCircuitSimulation which extendsBasicCircuitSimulation
and contains definitions of half adders and full adders as they were presented earlier in the
chapter:

abstract class CircuitSimulation extends BasicCircuitSimulation {

def halfAdder(a : Wire, b : Wire, s : Wire, c : Wire) { ... }

def fullAdder(a : Wire, b : Wire, cin : Wire, sum : Wire, cout : Wire) { ... }

}

A concrete circuit simulation will be an object that inherits that class. The object still needs
to fix the gate delays according to the circuit implementation technology that’s simulated.
Finally, one also needs to define the concrete circuit that’s going to be simulated. You can do
these steps interactively using the Scala interpreter:

scala> import simulator._
import simulator._

First, the gate delays. Define an object (let’s call itMySimulation) that provides some num-
bers:

scala> object MySimulation extends CircuitSimulation {

| val InverterDelay = 1
| val AndGateDelay = 3
| val OrGateDelay = 5
| }

defined module MySimulation

scala> import MySimulation._
import MySimulation._

Next, the circuit. Define four wires, and place probes on two of them:

val input1, input2, sum, carry = new Wire
input1 : MySimulation.Wire = simulator.BasicCircuitSimulation$Wire@111089b
input2 : MySimulation.Wire = simulator.BasicCircuitSimulation$Wire@14c352e
sum : MySimulation.Wire = simulator.BasicCircuitSimulation$Wire@37a04c
carry : MySimulation.Wire = simulator.BasicCircuitSimulation$Wire@1fd10fa

scala> probe("sum", sum)

8

sum 0 new−value = false
unnamed0 : Unit = ()

scala> probe("carry", carry)
carry 0 new−value = false
unnamed1 : Unit = ()

Note that the probe’s immediately print an output. This is a consequence of the fact that every
action installed on a wire is executed a first time when the action is installed.

Now define a half-adder connecting the wires:

scala> halfAdder(input1, input2, sum, carry)
unnamed2 : Unit = ()

Finally, set one after another the signals on the two input wires totrue and run the simulation:

scala> input1 setSignal true; run
error : That kind of statement combination is not supported by the interpreter.

scala> input1 setSignal true
unnamed3 : Unit = ()

scala> run()
∗∗∗ simulation started, time = 0 ∗∗∗
sum 8 new−value = true
unnamed4 : Unit = ()

scala> input2 setSignal true
unnamed5 : Unit = ()

scala> run()
∗∗∗ simulation started, time = 8 ∗∗∗
carry 11 new−value = true
sum 15 new−value = false
unnamed6 : Unit = ()

Summary

This chapter has brought together two techniques that seem at first disparate: mutable state
and higher-order functions. Mutable state was used to simulate phsical entities whose state
changes over time. Higher-order functions were used in the simulation framework to execute
actions at specified points in simulated time. They were also used in the circuit simulations
astriggers that associate actions with state changes. On the side, you have seen a simple way
to define a domain-specific language as a library. That’s probably enough for one chapter! If
you feel like staying a bit longer, maybe you want to try more simulation examples. You can
combine half-adders and full-adders to larger circuits, or design new circuits from the basic
gates defined so far and simulate them.

9

