
Week 9: Constraints

• Computer programs are usually organized as one-directional
computations which consume certain inputs and produce certain
outputs.

• (Pure) functional programming makes this explicit in the source
program, with

input = function argument output = function result
• Mathematics, on the other hand, is not always uni-directional.
• For instance, in an equation d · A · E = F · L, any four of the

quantities d, A,E, F, L can produce the fifth.
• E.g.

d = F · L/(A · E)

A = F · L/(d · E), etc
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A Language for Constraints

We now develop a constraint language that allows the user to formulate
equations like these and to request from the system to solve them.

There are two levels:

• Constraints as networks: Primitive constraints joined by connectors.
• Constraints as algebraic equations.

Example: The relationship between Celsius and Fahrenheit is:

C ∗ 9 = (F − 32 ) ∗ 5

This is expressed as a constraint network as follows.
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Using the Constraint System

Let’s say we want to convert between Celsius and Fahrenheit.

A converter is created by defining

val C = new Quantity;
val F = new Quantity;
CFconverter (C, F );
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Using the Converter

Here CFconverter is a method that constructs a constraint network.
def CFconverter (c : Quantity, f : Quantity ) = {

val u = new Quantity; val v = new Quantity;
val w = new Quantity; val x = new Quantity;
val y = new Quantity;
Multiplier (c, w, u ); Multiplier (v, x, u ); Adder (v, y, f );
Constant (w, 9 ); Constant (x, 5 ); Constant (y, −32 );

}

Compared to the graphical representation of the network, we have:

• Boxes are constraints such as Multiplier, Adder, Constant.
• Connectors are quantities (i.e. instances of class Quantity).
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To watch the network in action, start the interpreter

siris constr.scala
> :l CFconversion.scala

and place probes on the C and F quantities.

> Probe (”Celsius temp”, C );
> Probe (”Fahrenheit temp”, F );

Next, set one of the two quantities:

> C setValue 25
Probe : Celsius temp = 25
Probe : Fahrenheit temp = 77

Now we can try to set F to a different value.

> F setValue 212
Error! contradiction : 77 and 212

If we want to re-use the system with new values, we have to forget old
values first:

5



> C forgetValue
Probe : Celsius temp = ?
Probe : Fahrenheit temp = ?
> F setValue 212
Probe : Celsius temp = 100
Probe : Fahrenheit temp = 212

Note that the same network is used to compute C given F and to compute
F given C.

This non-directionality is characteristic of constraint-based systems.

Such systems are by now quite common; there is an industry building
them.

Examples: ILOG solver, TK!solver.

Constraint systems usually also optimize some quantities given others;
however, this is not treated here.
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Implementing the Constraint System

The implementation of the constraint system is a bit similar to the
implementation of the digital circuit simulator.

A constraint system is built from primitive constraints (boxes) and
quantities (connectors).

Primitive constraints simulate simple equations between quantities x, y, z,
such as

x = y + z,
x = y ∗ z,
x = c

where c is a constant.

A quantity is either defined or undefined.

A quantity can connect any number of constraints.
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Here is the interface of a quantity.

class Quantity {
def getValue : Option [double ] = ...;
def setValue (v : double, setter : Constraint ): unit = ...;
def setValue (v : double ): unit = setValue (v, NoConstraint );
def forgetValue (retractor : Constraint ): unit = ...;
def forgetValue : unit = forgetValue (NoConstraint );
def connect (c : Constraint ) = ...;

}

Explanations:

getValue returns the current value of the quantity.

setValue sets the value, and forgetValue forgets it.

Both methods exist in two overloaded variants.

One of the variants (which is called internally by the constraint system)
passes the constraint that causes the set or forget as additional parameter.

connect declares that the quantity participates in a constraint.
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Type Option

The Option type is defined by:

abstract class Option [+a ];
case class Some [a ] (value : a ) extends Option [a ];
case object None extends Option [All ];

The idea is that

• getValue returns None if no value is defined, and
• it returns Some (x ) if the quantitie’s value is x.

Clients of getValue then use pattern matching to decompose values:

q.getValue match {
case Some (x ) ⇒ /∗ do something with value ‘x’ ∗/
case None ⇒ /∗ handle undefined value ∗/

}
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Covariance

The definition of Option illustrates several points of Scala’s type system.

• The + in front of the type parameter a indicates that Option is a
co-variant type constructor:

If T is a subtype of S then Option [T ] is a subtype of Option [S ].

For instance, Option [String ] is a subtype of Option [Object ].
• If the + had been missing in the definition of class Option, then

Option [String ] and Option [Object ] would be two unrelated types.
• Question: Why can class constructors be not always covariant?
• None is defined to be a case object. That is, it is a single value which

inherits from Option [All ]. (Instead of object we have so far used the
reserved word module. The two mean the same thing).

• Type All is a subtype of every other type.
• Since Option is co-variant, this means that None is a value of every

type of the form Option [T ].
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Constraints

The interface of a constraint is quite simple.
abstract class Constraint {

def newValue : unit;
def dropValue : unit

}

There are two methods, newValue and dropValue.

newValue is called when one of the quantities connected to a constraint has
been set to a new value.

dropValue is called when one of the quantities connected to a constraint
has lost its value.

When woken up by a newValue, a constraint tries to compute the value(s)
of all quantities connected to it.

If successful, it propagates these values by calling setValue on all connected
participants.
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When woken up by a dropValue, a constraint simply tells all its
participants to drop their values as well.

So we have two mutually recursive calling sequences.

q.setValue → c.newValue → q’.setValue
q.forgetValue → c.dropValue → q’.forgetValue
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Implementing Primitive Constraints

The implementation of primitive constraints is now straightforward.

case class Adder (a1 : Quantity, a2 : Quantity, sum : Quantity )
extends Constraint {

def newValue = Triple (a1.getValue, a2.getValue, sum.getValue ) match {
case Triple (Some (x1 ), Some (x2 ), ) ⇒ sum.setValue (x1 + x2, this )
case Triple (Some (x1 ), , Some (r ) ) ⇒ a2.setValue (r − x1, this )
case Triple ( , Some (x2 ), Some (r ) ) ⇒ a1.setValue (r − x2, this )
case ⇒

}
def dropValue : unit = {

a1.forgetValue (this ); a2.forgetValue (this ); sum.forgetValue (this );
}
a1 connect this;
a2 connect this;
sum connect this;

}
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Explanations:

• newValue does a pattern match over the three quantities connected by
an adder.

• If two of the values are defined, it computes and sets the third.
• dropValue propagates to all connected quantities.
• The initialization code connects the adder with the three passed

quantities.

Exercise: Write a multiplier constraint. The constraint should “know”
that 0 ∗ x = 0, even if x is undefined.
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Constants

A constant is a special case of constraint.

It is implemented as follows.

case class Constant (q : Quantity, v : double ) extends Constraint {
def newValue : unit = error (”Constant.newValue” );
def dropValue : unit = error (”Constant.dropValue” );
q connect this;
q.setValue (v, this );

}

Remarks:

• Constants cannot be redefined or undefined. That’s why newValue

and dropValue give errors.
• Constants immediately set the value of the attached quantity.
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Quantities

It remains to implement quantities.

The state of a quantity is given by three values:

• its current value,
• the constraints attached to it,
• the informant, i.e. the constraint that caused the last value to be set.

The informant acts like a trail that avoids infinite cyclic propagation.

class Quantity {
private var value : Option [double ] = None;
private var constraints : List [Constraint ] = List ( );
private var informant : Constraint = NoConstraint; ... }

object NoConstraint extends Constraint { ... }
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Here is the implementation of getValue and setValue:

def getValue : Option [double ] = value;

def setValue (v : double, setter : Constraint ) = value match {
case Some (v1 ) ⇒

if (v != v1 ) error (”Error! contradiction : ” + v + ” and ” + v1 );
case None ⇒

informant = setter; value = Some (v );
for (val c ← constraints; c != informant ) do c.newValue;

}
def setValue (v : double ): unit = setValue (v, NoConstraint );

Method setValue signals an error if an attempt is made to change an
already defined value.

Otherwise, it propagates the change along by calling newValue of all
attached constraints except the informant.
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Here is the implementation of forgetValue and connect.

def forgetValue (retractor : Constraint ): unit = {
if (retractor == informant ) {

value = None;
for (val c ← constraints; c != informant ) do c.dropValue;

}
}
def forgetValue : unit = forgetValue (NoConstraint );

Method forgetValue resets the value to undefined (None), but only if the
call came from the same constraint that set the value.

It then propagates the change along by calling dropValue on all attached
constraints except for informant.

A call of forgetValue by somebody other than informant is ignored.
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Here is the implementation of connect.

def connect (c : Constraint ): unit = {
constraints = c :: constraints;
value match {

case Some ( ) ⇒ c.newValue
case None ⇒

}
}

The method adds the given constraint to the constraints list.

If the quantity has a value, it also calls newValue on the newly attached
constraint.
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Probes

Probes are special constraints that simply print all changes to the value of
the attached quantity.

They are implemented as follows.

case class Probe (name : String, q : Quantity ) extends Constraint {
def newValue : unit = printProbe (q.getValue );
def dropValue : unit = printProbe (None );
private def printProbe (v : Option [double ] ): unit = {

val vstr = v match {
case Some (x ) ⇒ x.toString ( )
case None ⇒ ”?”

}
System.out.println (”Probe : ” + name + ” = ” + vstr );

}
q connect this;

}
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A Refinement

The presented constraint system works OK, but constraints are tedious to
define.

Compare the equation:

C ∗ 9 = (F − 32 ) ∗ 5

with the code that defines CFconverter.

Would it not be nice if we could build a constraint system from an
equation like the one above?

We can get almost as far in Scala. Here’s an alternative way to express the
Celsius/Fahrenheits conversion.

val C = new Quantity;
val F = new Quantity;‘
C ∗ c (9 ) === (F + c (−32 ) ) ∗ c (5 );
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Here,

• ∗ and + are new methods in class Quantity that take a quantity and
return a new quantity attached to the corresponding constraint.

• c is a function that returns quantity attached to a constant constraint.
• === is a method in Quantity that takes a quantity and builds an

equality constraint.

For instance, here is an implementation of the + method in class Quantity:

def + (that : Quantity ): Quantity = {
val sum = new Quantity;
Adder (this, that, sum );
sum

}
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Summary

We have learned a new paradigm of computation: computing by solving
relations or constraints.

The distinguishing characteristic of this paradigm is that computation can
flow in more than one direction, depending on what’s defined and what is
not.

The presented implementation is based on a network of constraints (nodes)
and quantities (edges).

Solving constraints implies propagating changes in values along the edges
and across the nodes.

The network is expressed as a set of objects some of which encapsulate
state.
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