
Week 8: Functions and State

Up to now, all our programs did not have side-effects.

Therefore, the notion of time did not matter.

For a program that terminates, any sequence of actions would have led to
the same result!

This is also reflected by the substitution model of computation.

A rewrite-set can be applied anywhere in a term, and all rewritings that
terminate lead to the same solution.

This is a deep result in λ-calculus, the theory underlying functional
programming.

More about that in the course “Concurrency: Languages, Programming
and Theory”.
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Stateful Objects

We normally view the world as a set of objects, some of which have state
that changes over time.

An object has state (or: is stateful) if its behavior is influenced by its
history.

Example: a bank account object has state, because the question

“can I withdraw 100 CHF?”

might have different answers during the lifetime of the account.
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Implementing State

All mutable state is ultimately built from variables.

A variable definition is written like a value definition, but starts with var

instead of val.

Example:
var x : String = ”abc”;
var count = 111;

Like a value definition, a variable definition associates a name with a value.

But in the case of a variable definition, this association may be changed
later by an assignment.

Assignments are written like in Java.

Example:

x = ”hello”;
count = count + 1;
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State in Objects

Real-world objects with state are represented by objects that have
variables as members.

Example: Here is a class that represents bank accounts.

class BankAccount {
private var balance = 0;
def deposit (amount : int ): unit =

if (amount > 0 ) balance = balance + amount;

def withdraw (amount : int ): int =
if (0 < amount && amount ≤ balance ) {

balance = balance − amount;
balance

} else error (”insufficient funds” );
}
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The class defines a variable balance which contains the current balance of
an account.

Methods deposit and withdraw can change the value of balance through
assignments.

Note that balance is private in class BankAccount – hence it can not be
accessed directly outside the class.

To create bank-accounts, we use the usual object creation notation:

val myAccount = new BankAccount
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Example: Here is a siris session that deals with bank accounts.
> :l bankaccount.scala
loading file ’bankaccount.scala’
> val account = new BankAccount
val account : BankAccount = BankAccount$class@1797795
> account deposit 50
( ): scala.Unit
> account withdraw 20
30 : scala.Int
> account withdraw 20
10 : scala.Int
> account withdraw 15
java.lang.RuntimeException : insufficient funds

at error (Predef.scala :3 )
at BankAccount$class.withdraw (bankaccount.scala :13 )
at <top−level> (console :1 )

>

Applying the same operation twice to an account yields different results.

So, clearly, accounts are stateful objects.
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Sameness and Change

Assignments pose new problems in deciding when two expressions are “the
same”.

If assignments are excluded, and one writes

val x = E; val y = E;

where E is an arbitrary expression, then x and y can reasonably be
assumed to be the same. I.e. one could have equivalently written

val x = E; val y = x

(This property is usually called referential transparency.)

But once we admit assignments, the two definition sequences are different.
Consider:

val x = new BankAccount; val y = new BankAccount

Q: Are x and y the same?
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Operational Equivalence

To answer the last question, we need to be more precise what “sameness”
means.

The precise meaning of “being the same” is captured in the property of
operational equivalence.

Somewhat informally, this property is stated as follows.

Suppose we have two definitions of x and y.

To test whether x and y are the same,

• Execute the definitions followed by an arbitrary sequence S of
operations that involve x and y. Observe the results (if any).

• Then, execute the definitions with another sequence S’ which results
from S by renaming all occurrences of y in S to x.

• If the results of running S’ are different, then surely x and y are
different.
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• On the other hand, if all possible pairs of sequences (S, S’ ) yield the
same results, then x and y are the same.

Given this definition, let’s test whether

> val x = new BankAccount
> val y = new BankAccount

defines values x and y which are the same.

Here are the definitions again, followed by a test sequence:

> val x = new BankAccount
> val y = new BankAccount
> x deposit 30
30
> y withdraw 20
java.lang.RuntimeException : insufficient funds

Now, rename all occurrences of y in that sequence to x. We get:
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> val x = new BankAccount
> val y = new BankAccount
> x deposit 30
30
> x withdraw 20
10

Since the final results are different, we have established that x and y are
not the same.

On the other hand, if we define

val x = new BankAccount;
val y = x

then no sequence of operations can distinguish between x and y, so x and y

are the same in this case.
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Assignment and the Substitution Model

These examples show that our previous substitution model of computation
cannot be used anymore.

After all, under this substitution model, we could always replace a value
name by its defining expression.

For instance in
val x = new BankAccount;
val y = x

the x in the definition of y could be replaced by new BankAccount.

But we have seen that this change leads to a different program.

So the substitution model must be invalid, once we add assignments.

We will see next week how to modify the substitution model so that it can
deal with the additions.
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Loops

Claim: Variables are enough to model all of imperative programming.

But what about control structures such as loops?

These can be modelled using functions.

Example: Here is a Scala program that uses a while loop.

def power (x : double, exp : int ): double = {
var r = 1.0;
var i = exp;
while (i > 0 ) { r = r ∗ x; i = i − 1 }
r

}

The example shows that while is not a reserved word.

How is the name defined?
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Definition of while

while is a function that takes two parameters:

• a condition, of type boolean, and
• a command, of type unit.

Both condition and command need to be passed by-name, so that they are
evaluated repeatedly.

This leads to the following definition of while.

def while (def condition : boolean ) (def command : unit ): unit =
if (condition ) {

command; while (condition ) (command )
} else {
}

Note that while is tail recursive, so it should be able to operate in constant
stack space.
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Exercise: Write a function implementing repeat loop, which should be
applied as follows:

repeat {
command

} ( condition )

Is there also a way to obtain a loop syntax like the following?

repeat {
command

} until ( condition )

In the Scala interpreter, functions for while and repeat are pre-loaded in
file Predef.scala.

So they are available without further definitions to user programs.
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For-Loops

Java’s for-loop is an exception; it cannot be simply modelled as a
higher-order function.

The reason is that in code like

for (int i = 1; i < 3; i = i + 1 ) { System.out.println (i ); }

the argument to for contains a declaration of the variable i, which is visible
in the other arguments and in the body.

However, there exists a for-loop syntax in Scala that does something
similar.

for (val i ← List.range (1, 3 ) ) do { System.out.print (i + ” ” ) }

This will print 1 2.
Contrast this with

> for (val i ← List.range (1, 3 ) ) yield i
List (1, 2 )
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Extended Example: Discrete Event

Simulation

We now discuss an example, which demonstrates how assignments and
higher-order functions can be combined in interesting ways.

We will build a simulator for digital circuits.

The example also shows how discrete event simulation programs in general
are structured and built.
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Digital Circuits

We start with a little language to describe digital circuits.

A digital circuit is built from wires and function boxes.

Wires carry signals which are transformed by function boxes.

We will represent signals by the booleans true and false.

Basic function boxes (or: gates) are:

• An inverter, which negates its signal
• An and-gate, which sets its output to the conjunction of its input.
• An or-gate, which sets its output to the disjunction of its input.

Other function boxes can be built by combining basic ones.

Gates have delays, so an output of a gate will change only some time after
its inputs change.
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A Language for Digital Circuits

We describe the elements of a digital circuit by the following set of Scala
classes and functions.

First, there is a class Wire for wires.

We can construct wires as follows.
val a = new Wire;
val b = new Wire;
val c = new Wire;

Second, there are functions

def inverter (input : Wire, output : Wire ): unit
def andGate (a1 : Wire, a2 : Wire, output : Wire ): unit
def orGate (o1 : Wire, o2 : Wire, output : Wire ): unit

which “make” the basic gates we need (as side-effects).

More complicated function boxes can now be built from these.
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For instance, to construct a half-adder, we can define:

def halfAdder (a : Wire, b : Wire, s : Wire, c : Wire ): unit = {
val d = new Wire;
val e = new Wire;
orGate (a, b, d );
andGate (a, b, c );
inverter (c, e );
andGate (d, e, s );

}
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This abstraction can itself be used, for instance in defining a full adder:

def fullAdder (a : Wire, b : Wire, cin : Wire, sum : Wire, cout : Wire ) = {
val s = new Wire;
val c1 = new Wire;
val c2 = new Wire;
halfAdder (a, cin, s, c1 );
halfAdder (b, s, sum, c2 );
orGate (c1, c2, cout );

}
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What Else Needs to Be Done?

To summarize, class Wire and functions inverter, andGate, and orGate

represent a little language in which users can define digital circuits.

We now give implementations of this class and these functions, which allow
one to simulate circuits.

These implementations are based on a simple and general API for discrete
event simulation.
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The Simulation API

Discrete event simulation performs user-defined actions at specified times.

An action is a function which takes no parameters and returns a unit

result:

type Action = ( ) ⇒ unit;

The time is simulated; it is not the actual “wall-clock” time.

A concrete simulation will be done inside an object which inherits from the
abstract Simulation class, which has the following signature:

abstract class Simulation {
def currentTime : int;
def afterDelay (delay : int ) (action : Action ): unit;
def run : unit;

}
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Here,

currentTime returns the current simulated time as an integer number.

afterDelay schedules an action to be performed at a specified delay after
currentTime.

run runs the simulation until there are no further actions to be performed.
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The Wire Class

A wire needs to support three basic actions.

• getSignal : boolean returns the current signal on the wire.
• setSignal (sig : boolean ): unit sets the wire’s signal to sig.
• addAction (p : Action ): unit attaches the specified procedure p to the

actions of the wire. All attached action procedures will be executed
every time the signal of a wire changes.

Here is an implementation of the Wire class:
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class Wire {
private var sigVal = false;
private var actions : List [Action ] = List ( );
def getSignal = sigVal;
def setSignal (s : boolean ) =

if (s != sigVal ) {
sigVal = s;
actions.foreach (action ⇒ action ( ) );

}
def addAction (a : Action ) = {

actions = a :: actions; a ( )
}

}

Two private variables make up the state of a wire.

• The variable sigVal represents the current signal.
• The variable actions represents the action procedures currently

attached to the wire.
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Inverters

We implement an inverter by installing an action on its input wire.

The action of an inverter is to output the negated input signal.

The action needs to take effect at InverterDelay simulated time units after
the input changes.

Hence, the following implementation:

def inverter (input : Wire, output : Wire ) = {
def invertAction ( ) = {

val inputSig = input.getSignal;
afterDelay (InverterDelay ) { ( ) ⇒ output.setSignal (!inputSig ) };

}
input addAction invertAction

}
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And-Gates

And-gates are implemented analogously to inverters.

The action of an andGate is to output the conjunction of its input signals.

This should happen at AndGateDelay simulated time units after any one
of its two inputs changes.

Hence, the following implementation:

def andGate (a1 : Wire, a2 : Wire, output : Wire ) = {
def andAction ( ) = {

val a1Sig = a1.getSignal;
val a2Sig = a2.getSignal;
afterDelay (AndGateDelay ) { ( ) ⇒ output.setSignal (a1Sig & a2Sig ) };

}
a1 addAction andAction;
a2 addAction andAction;

}
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Exercise: Write the implementation of orGate.

Exercise: Another way is to define an or-gate by a combination of
inverters and and gates. Define a function orGate in terms of andGate and
inverter. What is the delay time of this function?
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The Simulation Class

Now, we just need to implement class Simulation, and we are done.

The idea is that we maintain inside a Simulation object an agenda of
actions to perform.

The agenda is represented as a list of pairs of actions and the times they
need to be run.

The agenda list is sorted, so that earlier actions come before later ones.

class Simulation {

private type Agenda = List [Pair [int, Action ] ];
private var agenda : Agenda = List ( );

There is also a private variable curtime to keep track of the current
simulated time.

private var curtime = 0;
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An application of the method afterDelay (delay ) (action ) inserts the pair
(curtime + delay, action ) into the agenda list at the appropriate place.

An application of the method run removes successive elements from the
agenda and performs their actions.

It continues until the agenda is empty:

def run = {
afterDelay (0 ){ ( ) ⇒ System.out.println (”∗∗∗ simulation started ∗∗∗” ); }
while (!agenda.isEmpty ) { next }

}

It makes use of a function next, which removes the first element of the
agenda and performs its action.

The implementations of next and afterDelay are left as an exercise.
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Running the Simulator

To run the simulator, we still need a way to inspect changes of signals on
wires.

To this purpose, we write a function probe.

def probe (name : String, wire : Wire ): unit = {
wire addAction { ( ) ⇒

System.out.println (
name + ” ” + currentTime + ” new value = ” + wire.getSignal );

}
}

Now, define four wires, and place probes on two of them:
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> val input1 = new Wire
> val input2 = new Wire
> val sum = new Wire
> val carry = new Wire

> probe (”sum”, sum )
sum 0 new value = false
> probe (”carry”, carry )
carry 0 new value = false

Define a half-adder connecting the wires:

> halfAdder (input1, input2, sum, carry );

set input1 to true and run the simulation.
> input1 setSignal true; run
∗∗∗ simulation started ∗∗∗
sum 8 new value = true
> input2 setSignal true; run
carry 11 new value = true
sum 15 new value = false

etc.
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Summary

• State and Assignment complicate our mental model of computation.
• In particular, referential transparency is lost.
• On the other hand, assignment gives us new ways to formulate

programs elegantly.
• Example: Discrete event simulation.
• Here, a system is represented by a mutable list of action procedures.
• Action procedures, when called, change the state of objects and can

also install further action procedures.
• As always, it depends on the situation whether purely functional

programming or programming with assignments works best.
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