
For Notation

Higher-order functions such as map, flatMap, filter provide powerful
constructions for dealing with lists.

But sometimes the level of abstraction required by these functions makes a
program hard to understand.

Here, Scala’s for notation can help.

Example: Say we are given a list persons of persons with name and age

fields. To print the names of all persons in the list aged over 20, one writes:

for { val p ← persons; p.age > 20 } yield p.name

which is equivalent to:

persons filter (p ⇒ p.age > 20) map (p ⇒ p.name)

The for-expression is similar to a for-loop in imperative languages, except
that it constructs a list of the results of all iterations.

1

For Syntax

A for-expression is of the form

for (s) yield e

(Instead of parentheses, braces may also be used.)

Here, s is a sequence of generators and filters.

• A generator is of the form val p ← e, where p is a pattern and e is a
list-valued expression. It binds the variables in pattern p to successive
values in the list.

• A filter is an expression f of type boolean. It omits from consideration
all bindings for which f is false.
• The sequence must start with a generator.
• If there are several generators in a sequence, later generators vary

more rapidly than earlier ones.

2

Using for

Here is an example which was solved previously with higher-order
functions:

Example: Given a positive integer n, find all pairs of positive integers i, j,
where 1 ≤ j < i < n such that i + j is prime.

for { val i ← List.range (1, n);
val j ← List.range (1, i);
isPrime (i+j)

} yield Pair (i, j)

Example: The scalar product of two vectors can be written as follows.

def scalarProduct (xs : List [Double], ys : List [Double]) : Double = {
sum (for { val Pair (x, y) ← xs zip ys } yield x ∗ y)

}

3

Example: n-Queens

• The eight-queens puzzle asks to place 8 queens on a chessboard so
that no queen is in check from any other.
• That is, no two queens may be on the same row, column, or diagonal.
• We now develop a solution for chessboards of arbitrary size, not just 8.
• One way to solve the puzzle is to place a queen in each row.
• Once we have placed k − 1 queens, we must place the k’th queen in a

column where it does not check any of the queens on the board.

4

• We can solve this puzzle by a recursive algorithm.

• Assume that we have already generated all solutions of placing
k−1 queens on a board of size n.
• Each solution is represented by a list (of length k−1) of column

numbers (between 1 and n).
• The column number of the queen in row k−1 comes first in the

list, followed by the column number of the queen in row k−2, etc.
• All solutions together are then represented as a list of lists, one

element for each solution.
• Now, to place the k’th queen, generate all possible extensions of

each previous solution by one more queen:

5

def queens (n : int): List [List [int]] = {
def placeQueens (k : int): List [List [int]] = {

if (k == 0) List (List ())
else {

for { val queens ← placeQueens (k − 1);
val col ← range (1, n + 1);
isSafe (col, queens, 1) } yield col :: queens

}
}
placeQueens (n);

}

Exercise: Write a function

def isSafe (col : int, queens : List [int], delta : int): boolean

which tests whether a queen in the given column col is safe with respect to
the queens already placed. Here, delta is the difference between the row of
the queen to be placed and the row of the first queen in the list.

6

Querying with for

The for-notation is essentially equivalent to common operations of
database query languages.

Example: Say we are given a book database books, represented as a list
of books.

class Book {
val title : String;
val authors : List [String];

}

val books : List [Book] = List (
new Book {

val title = ”Structure and Interpretation of Computer Programs”;
val authors = List (”Abelson, Harald”, ”Sussman, Gerald J.”);

},

7

new Book {
val title = ”Introduction to Functional Programming”;
val authors = List (”Bird, Richard”);

},
new Book {

val title = ”Effective Java”;
val authors = List (”Bloch, Joshua”);

}
)

Then, to find the titles of all books whose author’s last name is “Bird”:
for { val b ← books; val a ← b.authors; a startsWith ”Bird”
} yield b.title

(Here, startsWith is a method in java.lang.String). Or, to find the titles of
all books that have the word ”Program” in their title:

for { val b ← books; containsString (b.title, ”Program”)
} yield b.title

(Here, containsString is a method we have to write, by using method
indexOf in java.lang.String for example).

8

Or, to find the names of all authors that have written at least two books in
the database.

for { val b1 ← books;
val b2 ← books;
b1.title.compareTo (b2.title) < 0;
val a1 ← b1.authors;
val a2 ← b2.authors;
a1 == a2 } yield a1

Problem: What happens if an author has published 3 books?

Solution: Need to remove duplicate authors from result lists.

This can be achieved with the following function.
def removeDuplicates [a] (xs : List [a]): List [a] =

if (xs.isEmpty) xs
else xs.head :: removeDuplicates (xs.tail filter (x ⇒ x != xs.head));

The last expression can be equivalently expressed as follows.

xs.head :: removeDuplicates (for (val x ← xs.tail; x != xs.head) yield x)

9

Aside: Object Creation Expressions

The previous example has shown a new way of creating objects:

new Book {
val title = ”Structure and Interpretation of Computer Programs”;
val authors = List (”Abelson, Harald”, ”Sussman, Gerald.J”);

}

Here, the class name was followed by a template.

The template consists of definitions for the created object.

Typically, these definitions override abstract members of the class.

This is similar to anonymous classes in Java.

10

One can think of such an expression as being equivalent to a definition of a
local class and a value of that class:

{
class Book’ extends Book {

val title = ”Structure and Interpretation of Computer Programs”;
val authors = List (”Abelson, Harald”, ”Sussman, Gerald.J”);

}
(new Book’): Book

}

11

Translation of for

For-syntax is closely related to the higher-order functions map, flatMap

and filter.

First, these functions can all be defined in terms of for:

abstract class List [a] {
...
def map [b] (f : a ⇒ b): List [b] =

for { val x ← this } yield f (x)

def flatMap [b] (f : a ⇒ List [b]): List [b] =
for { val x ← this; val y ← f (x) } yield y

def filter (p : a ⇒ boolean): List [a] =
for { val x ← this; p (x) } yield x

}

12

Second, for-expressions can themselves be expressed in terms of map,
flatMap and filter.

Here is the translation scheme used by the Scala compiler.

• A simple for-expression

for (val x ← e) yield e’

is translated to

e.map (x ⇒ e’)

• A for-expression

for (val x ← e; f; s) yield e’

where f is a filter and s is a (possibly empty) sequence of generators or
filters is translated to

for (val x ← e.filter (x ⇒ f); s) yield e’

(and then translation continues with the latter expression).

13

• A for-expression
for (val x ← e; val y ← e’; s) yield e”

where s is a (possibly empty) sequence of generators or filters is
translated to

e.flatMap (x ⇒ for (val y ← e’; s) yield e”)

(and then translation continues with the latter expression).

Example: Taking our ”pairs of integers whose sum is prime” example:
for { val i ← range (1, n);

val j ← range (1, i);
isPrime (i+j)

} yield Pair (i, j)

Here is what we get when we translate this expression:
range (1, n)

.flatMap (
i ⇒ range (1, i)

.filter (j ⇒ isPrime (i+j))

.map (j ⇒ Pair (i, j)))

14

Exercise: Define the following function in terms of for.

def concat [a] (xss : List [List [a]]): List [a] =
xss.foldRight (xs : List [a], ys : List [a] ⇒ xs ::: ys) (List ())

Exercise: Translate

for { val b ← books; val a ← b.authors; a startsWith ”Bird” } yield b.title
for { val b ← books; containsString (b.title, ”Program”) } yield b.title

to higher-order functions.

15

Generalizing for

Interestingly, the for-translation is not restricted to lists at all; it only
relies on the presence of methods map, flatMap, and filter.

This gives programmers the possibility to have for-syntax for other types
as well – one only needs to define map, flatMap, and filter for these types.

There are many types for which this is useful: arrays, iterators, databases,
XML data, optional values, parsers, etc.

For instance, books might be not a list but a database stored on some
server.

As long as the client interface to the database defines methods map,
flatMap and filter, we can use for-syntax to query the database.

Topic of active research: What is needed to make languages scalable, so
that they can subsume domain-specific languages (in this database query
languages such as SQL or XQuery)?

16

