
Week 5: More On Lists
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Reducing Lists

Another common operation is to combine the elements of a list with some
operator.

For instance:
sum (List (x1, ..., xn ) ) = 0 + x1 + ... + xn

product (List (x1, ..., xn ) ) = 1 ∗ x1 ∗ ... ∗ xn

These can be implemented with the usual recursive scheme:

def sum (xs : List [int ] ): int = xs match {
case Nil ⇒ 0
case y :: ys ⇒ y + sum (ys )

}

def product (xs : List [int ] ): int = xs match {
case Nil ⇒ 1
case y :: ys ⇒ y ∗ product (ys )

}
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The generalization reduceLeft inserts a given binary operator between
adjacent elements.

E.g.

List (x1, ..., xn ).reduceLeft (op ) = (... (x1 op x2 ) op ... ) op xn

Then we can simply write:

def sum (xs : List [int ] ) = (0 :: xs ) reduceLeft { (x, y ) ⇒ x + y}
def product (xs : List [int ] ) = (1 :: xs ) reduceLeft { (x, y ) ⇒ x ∗ y}
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Implementation of ReduceLeft

How can reduceLeft be implemented?

abstract class List [a ] { ...
def reduceLeft (op : (a, a ) ⇒ a ): a = this match {

case Nil ⇒ error (”Nil.reduceLeft” )
case x :: xs ⇒ (xs foldLeft x ) (op )

}

def foldLeft [b ] (z : b ) (op : (b, a ) ⇒ b ): b = this match {
case Nil ⇒ z
case x :: xs ⇒ (xs foldLeft op (z, x ) ) (op )

}
}

The reduceLeft function is defined in terms of another generally useful
function, foldLeft.
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foldLeft takes as additional parameter an accumulator z, which is returned
for empty lists.

That is,

(List (x1, ..., xn ) foldLeft z ) (op ) = (... (z op x1 ) op ... ) op xn

So sum and product could be defined alternatively as follows.

def sum (xs : List [int ] ) = (xs foldLeft 0 ) { (x, y ) ⇒ x + y}
def product (xs : List [int ] ) = (xs foldLeft 1 ) { (x, y ) ⇒ x ∗ y}
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FoldRight and ReduceRight

Applications of foldLeft and reduceLeft expand to left-leaning trees:

They have duals foldRight and reduceRight, which produce right-leaning
trees. I.e.

List (x1, ..., xn ).reduceRight (op ) = x1 op ( ... (xn−1 op xn )... )
(List (x1, ..., xn ) foldRight acc ) (op ) = x1 op ( ... (xn op acc )... )

These are defined as follows.
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def reduceRight (op : (a, a ) ⇒ a ): a = match
case Nil ⇒ error (”Nil.reduceRight” )
case x :: Nil ⇒ x
case x :: xs ⇒ op (x, xs.reduceRight (op ) )

}
def foldRight [b ] (z : b ) (op : (a, b ) ⇒ b ): b = match {

case Nil ⇒ z
case x :: xs ⇒ op (x, (xs foldRight z ) (op ) )

}

For associative and commutative operators op, foldLeft and foldRight are
equivalent (even though there may be a difference in efficiency).

But sometimes, only one of the two operators is appropriate or has the
right type:

Example: Here is an alternative formulation of concat:

def concat [a ] (xs : List [a ], ys : List [a ] ): List [a ] =
(xs foldRight ys ) { (x, xs ) ⇒ x :: xs}

Here it is not possible to replace the foldRight with foldLeft. (Why not?)
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List Reversal Again

Here is a list reversal function with linear cost.

The idea is to use a foldLeft operation:

def reverse [a ] (xs : List [a ] ): List [a ] = (xs foldLeft z? ) (op? )

We only need to fill in the z? and op? parts.

Let’s try to deduce them from examples.

First,

List ( )

= reverse (List ( ) ) // by specification

= (List ( ) foldLeft z ) (op ) // by the template for reverse

= z // by definition of foldLeft

Hence, z = List ( ).
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Second,

List (x )
= reverse (List (x ) ) // by specification

= (List (x ) foldLeft List ( ) ) (op )// by the template for reverse, with z = List()

= op (List ( ), x ) // by definition of foldLeft

Hence, op (List ( ), x ) = List (x ) = x :: List ( ). This suggests to take as op

the :: operator with its operands exchanged.

Hence, we arrive at the following implementation for reverse.

def reverse [a ] (xs : List [a ] ): List [a ] =
(xs foldLeft List [a ] ( ) ){ (xs, x ) ⇒ x :: xs}

Remark: The type parameter in List [a ] ( ) is necessary to make the type
inferencer work.

Q: What is the complexity of this implementation of reverse?
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More on Fold and Reduce

Exercise: Fill in the missing expressions to complete the following
definitions of some basic list-manipulation operations as fold operations.

def mapFun [a, b ] (xs : List [a ], f : a ⇒ b ): List [b ] =
(xs foldRight List [b ] ( ) ){ ?? }

def lengthFun [a ] (xs : List [a ] ): int =
(xs foldRight 0 ){ ?? }
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Nested Mappings

We can extend the higher-order list functions to include many
computations that are normally expressed as nested loops.

Example: Given a positive integer n, find all pairs of positive integers i, j,
where 1 ≤ j < i < n such that i + j is prime.

For example, if n = 7, the pairs are

i 2 3 4 4 5 6 6

j 1 2 1 3 2 1 5

i + j 3 5 5 7 7 7 11
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A natural way to do this is:

• Generate the sequence of all pairs (i, j ) of integers such that
1 ≤ j < i < n.

• Filter the pairs such that i + j is prime.

A natural way to generate the sequence of pairs is:

• Generate all integers between 1 and n (excluded) for i. This can be
packaged using the function

def range (from : int, end : int ): List [int ] =
if (from ≥ end ) scala.Predef.List ( )
else from :: range (from + 1, end );

which is predefined in module List.
• For each integer i, generate the list of pairs (i, 1 ), ..., (i, i−1 ). This

can be achieved by a combination of range and map:

List.range (1, i ) map (x ⇒ Pair (i, x ) )

• Finally, combine all sublists using foldRight with :::.
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Putting everything together gives the following expression:

List.range (1, n )
.map (i ⇒ List.range (1, i ).map (x ⇒ Pair (i, x ) ) )
.foldRight (List [Pair [int, int ] ] ( ) ) { (xs, ys ) ⇒ xs ::: ys}
.filter (pair ⇒ isPrime (pair. 1 + pair. 2 ) )
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Function flatMap

The combination of mapping and then concatenating sublists resulting
from the map is so common that we there is a special method for it in
List.scala:

abstract class List [a ] { ...
def flatMap [b ] (f : a ⇒ List [b ] ): List [b ] = match {

case Nil ⇒ Nil
case x :: xs ⇒ f (x ) ::: (xs flatMap f )

}
}

With flatMap, our expression could have been written more concisely as
follows.

List.range (1, n )
.flatMap (i ⇒ List.range (1, i ).map (x ⇒ Pair (i, x ) ) )
.filter (pair ⇒ isPrime (pair. 1 + pair. 2 ) )

Q: What is a concise way to define isPrime? (Hint: use forall in List).
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Function zip

The zip method in List combines two lists into a list of pairs.

abstract class List [a ] { ...
def zip [b ] (that : List [b ] ): List [Pair [a,b ] ] =

if (this.isEmpty | | that.isEmpty ) Nil
else Pair (this.head, that.head ) :: (this.tail zip that.tail );

Example: Using zip and foldLeft, we can define the scalar product of two
lists as follows.

def scalarProduct (xs : List [Double ], ys : List [Double ] ): Double =
(xs zip ys )
.map (xy ⇒ xy. 1 ∗ xy. 2 )
.foldLeft (0.0 ){ (x, y ) ⇒ x + y}
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Summary

• We have encountered the list as a fundamental data structure in
functional programming.

• Lists are defined by parameterized classes, and operated upon by
polymorphic methods.

• Lists are the analogue of arrays in imperative languages.
• But unlike arrays, lists elements are usually not accessed by their

index.
• Instead, lists are traversed recurisvely or via higher-order combinators

such as map, filter, foldLeft, foldRight.
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Reasoning About Lists

Recall the concatenation operation for lists:

class List [a ] {
...
def ::: (that : List [a ] ): List [a ] =

if (isEmpty ) that
else head :: (tail ::: that )

}

We would like to verify that concatenation is associative, with the empty
list List ( ) as left and right identity:

(xs ::: ys) ::: zs = xs ::: (ys ::: zs)

xs ::: List() = xs = List() ::: xs

Q: How can we prove statements like the one above?

A: By structural induction over lists.
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Reminder: Natural Induction

Recall the proof principle of natural induction:

To show a property P (n) for all numbers n ≥ b:

1. Show that P (b) holds (base case).

2. For arbitrary n ≥ b show:

if P (n) holds, then P (n + 1) holds as well

(induction step).

Example: Given

def factorial (n : int ): int =
if (n == 0 ) 1
else n ∗ factorial (n−1 )

show that, for all n ≥ 4,

factorial (n ) ≥ 2n
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Case 4 is established by simple calculation of factorial (4 ) = 24 and
24 = 16.

Case n+1 We have for n ≥ 4:

factorial (n + 1 )
= (by the second clause of factorial(*))

(n + 1 ) ∗ factorial (n )
≥ (by calculation)

2 ∗ factorial (n )
≥ (by the induction hypothesis)

2 ∗ 2n.

Note that in our proof we can freely apply reduction steps such as in (*)
anywhere in a term.

This works because purely functional programs do not have side effects; so
a term is equivalent to the term it reduces to.

The principle is called referential transparency.

19



Structural Induction

The principle of structural induction is analogous to natural induction:

In the case of lists, it is as follows:

To prove a property P (xs) for all lists xs,

1. Show that P (List ( ) ) holds (base case).

2. For arbitrary lists xs and elements x show:

if P (xs) holds, then P (x :: xs) holds as well

(induction step).
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Example

We show (xs ::: ys ) ::: zs = xs ::: (ys ::: zs ) by structural induction on xs.

Case List ( ) For the left-hand side, we have:

(List ( ) ::: ys ) ::: zs
= (by first clause of :::)

ys ::: zs

For the right-hand side, we have:

List ( ) ::: (ys ::: zs )
= (by first clause of :::)

ys ::: zs

So the case is established.
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Case x :: xs

For the left-hand side, we have:

( (x :: xs ) ::: ys ) ::: zs
= (by second clause of :::)

(x :: (xs ::: ys ) ) ::: zs
= (by second clause of :::)

x :: ( (xs ::: ys ) ::: zs )
= (by the induction hypothesis)

x :: (xs ::: (ys ::: zs ) )

For the right-hand side, we have:

(x :: xs ) ::: (ys ::: zs )
= (by second clause of :::)

x :: (xs ::: (ys ::: zs ) )

So the case (and with it the property) is established.

Exercise: Show by induction on xs that xs ::: List ( ) = xs.
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Example (2)

As a more difficult example, consider function
abstract class List [a ] { ...

def reverse : List [a ] = match {
case List ( ) ⇒ List ( )
case x :: xs ⇒ xs.reverse ::: List (x )

}
}

We would like to prove the proposition that

xs.reverse.reverse = xs .

We proceed by induction over xs. The base case is easy to establish:
List ( ).reverse.reverse

= (by first clause of reverse)
List ( ).reverse

= (by first clause of reverse)
List ( )
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For the induction step, we try:

(x :: xs ).reverse.reverse
= (by second clause of reverse)

(xs.reverse ::: List (x ) ).reverse

There’s nothing more we can do to this expression, so we turn to the right
side:

x :: xs
= (by induction hypothesis)

x :: xs.reverse.reverse

The two sides have simplified to different expressions.

So we still have to show that

(xs.reverse ::: List (x ) ).reverse = x :: xs.reverse.reverse

Trying to prove this directly by induction does not work.

Instead we have to generalize the equation to:

(ys ::: List (x ) ).reverse = x :: ys.reverse
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This equation can be proved by a second induction argument over ys. (See
blackboard).

Exercise: Is it the case that (xs drop m ) at n = xs at (m + n ) for all
natural numbers m, n and all lists xs?
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Structural Induction on Trees

Structural induction is not restricted to lists; it works for arbitrary trees.

The general induction principle is as follows.

To show that property P (t ) holds for all trees of a certain type,

• Show P (l ) for all leaf trees l.
• For every interior node t with subtrees s1, ..., sn, show that

P (s1 ) ∧ ... ∧ P (sn ) ⇒ P (t ).

Example: Recall our definition of IntSet with operations contains and incl:

abstract class IntSet {
abstract def incl (x : int ): IntSet
abstract def contains (x : int ): boolean

}
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case class Empty extends IntSet {
def contains (x : int ): boolean = false
def incl (x : int ): IntSet = NonEmpty (x, Empty, Empty )

}
case class NonEmpty (elem : int, left : Set, right : Set ) extends IntSet {

def contains (x : int ): boolean =
if (x < elem ) left contains x
else if (x > elem ) right contains x
else true

def incl (x : int ): IntSet =
if (x < elem ) NonEmpty (elem, left incl x, right )
else if (x > elem ) NonEmpty (elem, left, right incl x )
else this

}

(With case added, so that we can use factory methods instead of new).

What does it mean to prove the correctness of this implementation?
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Laws of IntSet

One way to state and prove the correctness of an implementation is to
prove laws that hold for it.

In the case of IntSet, three such laws would be:

For all sets s, elements x, y:

Empty contains x = false
(s incl x ) contains x = true
(s incl x ) contains y = s contains y if x 6= y

(In fact, one can show that these laws characterize the desired data type
completely).

How can we establish that these laws hold?

Proposition 1: Empty contains x = false.

Proof: By the definition of contains in Empty.
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Proposition 2: (xs incl x ) contains x = true

Proof:

Case Empty

(Empty incl x ) contains x
= (by definition of incl in Empty)

NonEmpty (x, Empty, Empty ) contains x
= (by definition of contains in NonEmpty)

true

Case NonEmpty (x, l, r )

(NonEmpty (x, l, r ) incl x ) contains x
= (by definition of incl in NonEmpty)

NonEmpty (x, l, r ) contains x
= (by definition of contains in Empty)

true
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Case NonEmpty (y, l, r ) where y < x

(NonEmpty (y, l, r ) incl x ) contains x
= (by definition of incl in NonEmpty)

NonEmpty (y, l, r incl x ) contains x
= (by definition of contains in NonEmpty)

(r incl x ) contains x
= (by the induction hypothesis)

true

Case NonEmpty (y, l, r ) where y > x is analogous.

Proposition 3: If x 6= y then xs incl y contains x = xs contains x.

Proof: See blackboard.
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Exercise

Say we add a union function to IntSet:

class IntSet { ...
def union (other : IntSet ): IntSet

}
class Expty extends IntSet { ...

def union (other : IntSet ) = other
}
class NonEmpty (x : int, l : IntSet, r : IntSet ) extends IntSet { ...

def union (other : IntSet ): IntSet = l union r union other incl x
}

The correctness of union can be subsumed with the following law:

Proposition 4: (xs union ys ) contains x = xs contains x | | ys contains x.
Is that true ? What hypothesis is missing ? Show a counterexample.

Show Proposition 4 using structural induction on xs.
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