Functions and Data

In this section we will learn how functions create and encapsulate data structures.

Example: Rational Numbers
We want to design a package to do rational arithmetic.
A rational number $\frac{x}{y}$ is represented by two integers:

- its numerator x, and
- its denominator y.

Let's say we want to implement addition of two rational numbers.
We could define two functions
def addRationalNumerator (n1: int, d1: int, n2: int, d2: int): int; def addRationalDenominator (n1: int, d1: int, n2: int, d2: int): int;
but it would be hard to keep track of all the numerators and denominators.

A better alternative packs the numerator and denominator of a rational in one data structure.

In Scala, this is done by defining a class:

```
class Rational( x : int, y : int) \{
    def numer \(=x\);
    def denom \(=y\)
\}
```

The previous definition introduces two entities:

- A new type, named Rational.
- A constructor Rational to create elements of the type.

Scala keeps names for types and values in different name spaces. Hence there is no conflict between the two defintions of Rational.

Elements of a class type are called objects.
Objects are created by prefixing a class constructor application with new, e.g. new Rational (1, 2).

Object Members

Objects of class Rational have two members, numer and denom.
Members of an object are selected using infix '.' (i.e. as in Java).
Example:
? val $\mathrm{x}=$ new Rational (1, 2)
? x.numer
1
? x.denom
2

Working with Objects

We can now define arithmetic functions on rationals which implement the standard rules:

$$
\begin{aligned}
& \frac{n_{1}}{d_{1}}+\frac{n_{2}}{d_{2}}=\frac{n_{1} d_{2}+n_{2} d_{1}}{d_{1} d_{2}} \\
& \frac{n_{1}}{d_{1}}-\frac{n_{2}}{d_{2}}=\frac{n_{1} d_{2}-n_{2} d_{1}}{d_{1} d_{2}} \\
& \frac{n_{1}}{d_{1}} \cdot \frac{n_{2}}{d_{2}}=\frac{n_{1} n_{2}}{d_{1} d_{2}} \\
& \frac{n_{1}}{d_{1}} / \frac{n_{2}}{d_{2}}=\frac{n_{1} d_{2}}{d_{1} n_{2}} \\
& \frac{n_{1}}{d_{1}}=\frac{n_{2}}{d_{2}} \quad \text { iff } \quad n_{1} d_{2}=d_{1} n_{2}
\end{aligned}
$$

For instance
def addRational(r: Rational, $s:$ Rational): Rational $=$ new Rational (
r.numer * s.denom + s.numer $*$ r.denom,
r.denom * s.denom);
def makeString $(r:$ Rational $)=$
r.numer + "/" + r.denom;
? makeString (addRational (new Rational (1, 2), new Rational (2, 3))) 7/6

Methods

We can go further and also package functions operating on a data abstraction with the data abstraction itself.

Such functions are also called methods.
Example: Rational numbers would now in addition to functions numer and denom have functions add, sub, mul, div, equal, toString.

An implementation could be as follows:

```
class Rational (x: int, y : int) \{
    def numer \(=x\);
    def denom \(=y\);
    def add \((r:\) Rational \()=\)
        new Rational (
            numer \(*\) r.denom + r.numer \(*\) denom,
            denom * r.denom);
    def \(\operatorname{sub}(r:\) Rational \()=\)
```

override def toString () = numer $+" / "+$ denom;
\}
Note: the override modifier declares that toString overrides another method (i.e. the one in java.lang.Object).

Here is a client of the new Rational abstraction:

```
? val x = new Rational (1,3)
? val y = new Rational (5,7)
? val z = new Rational (3,2)
? x.add(y).mul(z)
66/42
```


Data Abstraction

The previous example showed that rational numbers are not always represented in their shortest form. (Why?)

One would expect that rationals are reduced to smallest possible numerators and denominators by dividing with their common divisor.

This could be implemented in all operations on rationals. But then it is easy to forget the division in some operation.

A better alternative is to normalize the representation by the class at the point where objects are constructed:
class Rational(x : int, $\mathrm{y}:$ int) $\{$
private def $\operatorname{gcd}(a: \operatorname{int}, b:$ int $):$ int $=$ if $(b==0)$ a else $\operatorname{gcd}(b, a \% b)$;
private val $g=\operatorname{gcd}(x, y)$;
def numer $=x / g$;
def denom $=y / g$;
\}
$g c d$ and g are private members; they can be accessed only from within class Rational.

With this definition, one gets:
? val $x=$ new Rational $(1,3)$
? val $y=$ new Rational $(5,7)$
? val $z=$ new Rational (3, 2)
? x.add (y).mul (z)
$33 / 21$
In this example, we computed gcd immediately because we anticipated that numer and denom would be called often.

It is also possible to call $g c d$ in the code of numer and denom:
E.g.

```
class Rational(x: int, y: int) {
    private def gcd(a: int, b: int): int = if (b== 0) a else gcd (b, a % b);
    def numer = x / gcd (x, y);
    def denom = y / gcd (x, y);
}
```

This would be advantageous if we expected numer and denom to be called infrequently.

The clients would in each case observe exactly the same behaviour.
The ability to choose different implementations of data without affecting clients is called data abstraction.

It is one of the cornerstones of good software engineering.

Self References

Within a class definition, the name this stands for the object whose method is executing.

Example: Add less and max functions to class Rational as follows. class Rational(x : int, y : int) $\{$
def less(that: Rational) $=$
numer $*$ that.denom $<$ that.numer $*$ denom;
def $\max ($ that $:$ Rational $)=$ if (this.less (that)) that else this; \}
Note that a simple name x which refers to another member of a class is just a shorthand for this.x. That is, less could have equivalently been formulated as follows.

```
def less (that: Rational) \(=\)
    this.numer \(*\) that.denom \(<\) that.numer \(*\) this.denom;
```


Classes and Substitution

Previously, the meaning of function application was defined using the substitution model of computation.

We now extend this model to classes and objects.
Question: How is a class instantiation new $C\left(e_{1}, \ldots, e_{m}\right)$ evaluated?
Answer: The argument expressions e_{1}, \ldots, e_{m} are evaluated as normal function arguments. That's all. The resulting expression, say, new $C\left(v_{1}, \ldots, v_{m}\right)$, is already a value.

Now assume a class definition

$$
\text { class } C\left(x_{1}, \ldots, x_{m}\right)\left\{\ldots \operatorname{def} f\left(y_{1}, \ldots, y_{n}\right)=b \ldots\right\}
$$

where

- The formal parameters of the class are x_{1}, \ldots, x_{m}.
- The class defines a function f with formal parameters y_{1}, \ldots, y_{n}.
(The function's parameter list may be absent. For brevity, we have omitted parameter types.)

Question: How is the expression new $C\left(v_{1}, \ldots, v_{m}\right) \cdot f\left(w_{1}, \ldots, w_{n}\right)$ evaluated?

Answer: The expression rewrites to:

$$
\begin{aligned}
& {\left[w_{1} / y_{1}, \ldots, w_{n} / y_{n}\right]} \\
& \quad\left[v_{1} / x_{1}, \ldots, v_{m} / x_{m}\right] \\
& \quad\left[\text { new } C\left(v_{1}, \ldots, v_{m}\right) / \text { this }\right] b
\end{aligned}
$$

There are three substitutions at work here:

- the substitution of actual arguments w_{1}, \ldots, w_{n} for the formal parameters of function f,
- the substitution of actual class arguments v_{1}, \ldots, v_{m} for the formal parameters of class C,
- the substitution of the object value $C\left(v_{1}, \ldots, v_{n}\right)$ for the self reference this.

Rewriting Examples

new Rational (1, 2).numer
\rightarrow 1
new Rational(1, 2).denom
\rightarrow
2
new Rational (1, 2).less (new Rational (2, 3))
\rightarrow
new Rational (1, 2).numer * new Rational (2, 3).denom $<$ new Rational (2, 3).numer * new Rational (1, 2).denom
$\rightarrow \ldots \rightarrow$
$1 * 3<2 * 2$
$\rightarrow \ldots \rightarrow$
true

Operators

In principle, Rational numbers are just as "natural" as integers.
But for users of these abstractions, there is an apparent difference:

- We write $x+y$, if x and y are integers, but
- we write r.add (s) is r and s are rational numbers.

In Scala, this difference can be made to disappear. We do that in two steps.
Step 1 Every method with one parameter can be used as an infix operator. Hence, it is possible to write

$r \operatorname{add} s$	$r . \operatorname{add}(s)$	
r less s		
$r \max s$	as alternatives for	$r . \operatorname{less}(s)$
$r . m a x(s)$		

Step 2 Operators can be used as normal identifiers.
I.e. an identifier can be one of the following:

- A letter, followed by a sequence of letters or digits
- An operator symbol, followed by a sequence of other operator symbols.

The precedence of an operator is determined by its first character.
The following table lists characters from lower to higher-precedence:

```
(all letters)
|
&
<>
=!
:
+ -
* / %
(all other special characters)
```

Hence, we can define Rational more naturally as follows...

```
class Rational(x: int, y: int) {
    private def gcd (a: int, b: int ): int = if (b==0) a else gcd (b, a % b);
    private val g = gcd (x, y);
    def numer = x / g;
    def denom = y / g;
    def + (r: Rational ) =
        new Rational(
            numer * r.denom + r.numer * denom,
            denom * r.denom );
    def}-(r:Rational)
        new Rational(
            numer * r.denom - r.numer * denom,
            denom * r.denom );
    def}*(r:Rational)
        new Rational(
            numer * r.numer,
    denom * r.denom );
    override def toString ( ) = numer + "/" + denom;
}
```

... and rational numbers can be used like int or float:
? val $\mathrm{x}=$ new Rational $(1,2)$
? val $y=$ new Rational (1,3)
? $x * x+y * y$
13/36

Abstract Classes

Consider the task of writing a class for sets of integer numbers with operations as follows.

```
abstract class IntSet {
    def incl (x: int): IntSet;
    def contains(x: int): boolean;
}
```

IntSet is an abstract class.
Abstract classes may contain members whose implementation is missing (in our case: incl and contains).

Therefore, no objects of an abstract class can be instantiated with new.

Class Extensions

We plan to implement sets as binary trees.
There are two possible forms of trees: A tree for the empty set, and a tree consisting of an integer and two subtrees.

Here are their implementations.

```
class Empty extends IntSet {
```

 def contains (\(x\) : int): boolean = false;
 def incl(x: int): IntSet = new NonEmpty (x, new Empty, new Empty);
 \}
class NonEmpty (elem:int, left:IntSet, right:IntSet) extends IntSet \{
def contains $(x:$ int $):$ boolean $=$
if $(x<e l e m)$ left contains x
else if $(x>$ elem $)$ right contains x else true;
def $\operatorname{incl}(x:$ int $):$ IntSet $=$
if $(x<e l e m)$ new NonEmpty (elem, left incl x, right $)$ else if $(x>$ elem $)$ new NonEmpty (elem, left, right incl $x)$ else this;
\}
Notes:

- Both Empty and NonEmpty extend class IntSet.
- This means that
- The types Empty and NonEmpty conform to type IntSet.
I.e. an object of type Empty or NonEmpty can be used wherever an object of type IntSet is required.

Base Classes and Subclasses

- IntSet is called base class of Empty and NonEmpty.
- Empty and NonEmpty are subclasses of IntSet.
- Every user-defined class in Scala extends some other class.
- If no extends clause is given, class scala.Object is assumed.
- Subclasses inherit all members of their base class.
- The definitions of contains and incl in classes Empty and NonEmpty implement the abstract functions in the base class IntSet.
- It is also possible to override an existing non-abstract definition in a subclass, but then the overriding definition must be labelled override.

Example:

```
abstract class Base {
    def foo = 1;
    def bar: int;
}
```

```
class Sub extends Base {
    override def foo = 2;
    def bar = 3;
}
```

Exercise: Write methods union and intersection to form the union and intersection between two sets.

Exercise: Add a method

$$
\text { def } \operatorname{excl}(x: \text { int })
$$

to return the given set without the element x . To accomplish this, it is useful to also implement a test method
def isEmpty: boolean
for sets.

Dynamic Binding

- Object-oriented languages (Scala included) implement dynamic method dispatch.
- That is, the code invoked for a method call depends on the run-time type of the object which contains the method.

Example:
(new Empty).contains (7)
\rightarrow
false

Example:

```
    new NonEmpty(7, new Empty, new Empty).contains (1)
    ->
        if (1<7) new Empty contains 1
        else if (1>7) new Empty contains 1
        else true
    ->
        new Empty contains 1
    ->
    false
```

Dynamic method dispatch is analogous to higher-order function calls. Question:

Can either be implemented in terms of the other?

Standard Classes

In fact, types such as int or boolean are not treated treated specially in Scala;

They are defined as type aliases of Scala classes in module Predef:
type boolean = scala.Boolean;
type int = scala.Int;
type long = scala.Long;

For efficiency, the compiler usually represents values of type scala.Int by 32 bit integers, values of type scala.Boolean by Java's booleans, etc.

But this is just an optimization, it has no effect on the meaning of a program.

Here is a hypothetical implementation of class Boolean.

Class Boolean

```
package scala;
trait Boolean {
    def ifThenElse[a] (def t: a) (def e:a): a;
    def && (def x: Boolean): Boolean = ifThenElse[Boolean](x)(false);
    def| |(defx: Boolean): Boolean = ifThenElse[Boolean](true)(x);
    def! : Boolean = ifThenElse[Boolean](false)(true);
    def}==(x:Boolean):Boolean = ifThenElse[Boolean](x)(x.!)
    def!= (x: Boolean): Boolean = ifThenElse[Boolean] (x.!) (x);
    def < (x: Boolean): Boolean = ifThenElse[Boolean](false)(x);
    def > (x: Boolean): Boolean = ifThenElse[Boolean](x.!)(false);
    def}\leq(x:Boolean): Boolean = ifThenElse[Boolean](x)(true);
    def }\geq(x:Boolean): Boolean = ifThenElse[Boolean](true)(x.!)
}
val true = new Boolean { def ifThenElse[a](def t:a) (def e:a)=t}
val false = new Boolean { def ifThenElse[a](def t:a)(def e:a)=e}
```


Class Int

Here is a partial specification of class Int.

```
package scala;
class Int extends Long {
    def + (that: Double): Double;
    def + (that: Float): Float;
    def + (that: Long): Long;
    def + (that: Int): Int; /* analogous for -, *, /, % */
    def << (cnt: Int): Int; /* analogous for >>, >>> */
    def & (that: Long): Long;
    def & (that: Int): Int; /* analogous for |, ^ */
    def == (that: Double): Boolean;
    def== (that: Float): Boolean;
    def}==(\mathrm{ that:Long): Boolean,** analogous for !=, <, >, s, \ */
}
```

Exercise: Give an implementation of the following class of non-negative integers.

```
abstract class Nat {
    def isZero( ): Boolean;
    def predecessor: Nat;
    def successor: Nat;
    def + (that: Nat): Nat;
    def- (that:Nat): Nat;
}
```

Do not use any of Scala's standard numeric classes in the implementation. Implement instead two subclasses

class Zero extends Nat;

class Succ (n : Nat) extends Nat;
one for the number zero; the other for positive numbers.

Pure Object-Orientation

A pure object-oriented language is a language where every value is an object.

If the language is class-based, this means that every value type should be a class.

Is Scala a pure object-oriented language?
We have seen that Scala's numeric types and type boolean can be implemented as normal classes.

We will see next week that functions can be regarded as objects as well.
The function type $A \Rightarrow B$ is treated as a shorthand for objects with an apply method:

```
def apply (x:A ): B
```


Summary

- We have seen how to implement data structures with classes.
- A class defines a type and a function to create objects of that type.
- Objects have functions as members which are selected using infix ' \quad '.
- Classes and members can be abstract, i.e. given without concrete implementation.
- A class can extend another class.
- If class A extends B then type A conforms to B.

That is, objects of type A can be used wherever objects of type B are required.

Language Elements Introduced This Week

Types:
Type $\quad=\ldots$ | ident
Types can now be arbitrary identifiers which represent classes.
Expressions:
Expr $\quad=\ldots$ | Expr ‘.' ident | new Expr
An expression can now be an object creation, or a selection E.m of a member m from an object-valued expression E.

Definitions:

A definition can now be a class definition such as class C (params) extends $B\{$ defs $\}$

The definitions defs in a class may be preceded by modifiers private or override.

