
Evaluation of Function Application

(Repetition)

One simple rule: A function application f (e1, ..., en ) is evaluated by

• Evaluating exprsssions e1, ..., en to values v1, ..., vn, and
• replacing the application with the function’s body where,
• actual parameters v1, ..., vn replace formal parameters of f.

This can be formalised as a rewriting of the program itself:

def f (x1, ..., xn ) = B ; ... f (v1, ..., vn )
→

def f (x1, ..., xn ) = B ; ... [v1/x1, ..., vn/xn ] B

Here, [v1/x1, ..., vn/xn ] B stands for B with all occurrences of xi replaced
by vi.

[v1/x1, ..., vn/xn ] is called a substitution.
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Rewriting Example:

Consider gcd:

def gcd (a : int, b : int ): int = if (b == 0 ) a else gcd (b, a % b )

Then gcd (14, 21 ) evaluates as follows:

gcd (14, 21 )
→ if (21 == 0 ) 14 else gcd (21, 14 % 21 )
→ if (False ) 14 else gcd (21, 14 % 21 )
→ gcd (21, 14 % 21 )
→ gcd (21, 14 )
→ if (14 == 0 ) 21 else gcd (14, 21 % 14 )
→ → gcd (14, 21 % 14 )
→ gcd (14, 7 )
→ if (7 == 0 ) 14 else gcd (7, 14 % 7 )
→ → gcd (7, 14 % 7 )
→ gcd (7, 0 )
→ if (0 == 0 ) 7 else gcd (0, 7 % 0 )
→ → 7
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Another rewriting example:

Consider factorial:

def factorial (n : int ): int = if (n == 0 ) 1 else n ∗ factorial (n − 1 )

Then factorial (5 ) rewrites as follows:

factorial (5 )
→ if (5 == 0 ) 1 else 5 ∗ factorial (5 − 1 )
→ 5 ∗ factorial (5 − 1 )
→ 5 ∗ factorial (4 )
→ ... → 5 ∗ (4 ∗ factorial (3 ) )
→ ... → 5 ∗ (4 ∗ (3 ∗ factorial (2 ) ) )
→ ... → 5 ∗ (4 ∗ (3 ∗ (2 ∗ factorial (1 ) ) ) )
→ ... → 5 ∗ (4 ∗ (3 ∗ (2 ∗ (1 ∗ factorial (0 ) ) ) )
→ ... → 5 ∗ (4 ∗ (3 ∗ (2 ∗ (1 ∗ 1 ) ) ) )
→ ... → 120

What differences are there between the two rewrite sequences?
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Tail Recursion

Implementation note: If a function calls itself as its last action, the
function’s stack frame can be re-used. This is called “tail recursion”.

⇒ Tail-recursive functions are iterative processes.

More generally, if the last action of a function is a call to another (possible
the same) function, only a single stack frame is needed for both functions.
Such calls are called “tail calls”.

Exercise: Design a tail-recursive version of factorial.
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Value Definitions

• A definition

def f = expr

introduces f as a name for the expression expr.
• expr will be evaluated every time the name f is used.
• In other words, def f introduces a parameterless function.
• By contrast a value definition

val x = expr

introduces x as a name for the value of expression expr.
• expr will be evaluated once at the point of the value definition.
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Example:

> val x = 2
val x : int = 2
> val y = square (x )
val y : int = 4
> y
4

Example:

> def loop : int = loop
def loop : int
> val x : int = loop (infinite loop)
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First-Class Functions

Functional languages treat functions as “first-class values”.

That is, like any other value, a function may be passed as a parameter or
returned as a result.

This provides a flexible mechanism for program composition.

Functions which take other functions as parameters or return them as
results are called “higher-order” functions.
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Example:

Sum integers between a and b:

def sumInts (a : int, b : int ): double =
if (a > b ) 0 else a + sumInts (a + 1, b )

Sum the cubes of all integers between a and b:

def cube (x : int ): double = x ∗ x ∗ x
def sumCubes (a : int, b : int ): double =

if (a > b ) 0 else cube (a ) + sumCubes (a + 1, b )

Sum reciprocals between a and b

def sumReciprocals (a : int, b : int ): double =
if (a > b ) 0 else 1.0 / a + sumReciprocals (a + 1, b )

These are all special cases of
∑b

a f(n) for different values of f .

Can we factor out the common pattern?
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Summation with a higher-order function

Define:
def sum (f : int ⇒ double, a : int, b : int ): double = {

if (a > b ) 0
else f (a ) + sum (f, a + 1, b )

}

Then we can write:
def sumInts (a : int, b : int ): double = sum (id, a, b );
def sumCubes (a : int, b : int ): double = sum (cube, a, b );
def sumReciprocals (a : int, b : int ): double = sum (reciprocal, a, b );

where
def id (x : int ): double = x;
def cube (x : int ): double = x ∗ x ∗ x;
def reciprocal (x : int ): double = 1.0/x;

The type int ⇒ double is the type of functions that take arguments of type
int and return results of type double.
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Anonymous functions

• Parameterisation by functions tends to create many small functions.
• Sometimes it is cumbersome to have to define these functions using

def.
• A shorter notation makes use of anonymous functions.
• Example: the function which cubes its integer input is written

x : int ⇒ x ∗ x ∗ x

Here, x : int is the function’s parameter, and x ∗ x ∗ x is its body.
• The parameter type can be omitted if it is clear (to the compiler) from

the context.
• If there are several parameters, they have to be included in

parentheses. Example:

(x : int, y : int ) ⇒ x + y
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Anonymous Functions Are Syntactic Sugar

• Generally, (x1 : T1, ..., xn : Tn ) ⇒ E defines a function which maps its
parameters x1, ..., xn to the result of the expression E (where E may
refer to x1, ..., xn).

• An anonymous function (x1 : T1, ..., xn : Tn ⇒ E ) can always be
expressed using a def as follows:

{ def f (x1 : T1, ..., xn : Tn ) = E ; f }

where f is fresh name which is used nowhere else in the program.
• We also say, anonymous functions are “syntactic sugar”.
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Summation with Anonymous Functions

Now we can write shorter:
def sumInts (a : int, b : int ): double = sum (x ⇒ x, a, b );
def sumCubes (a : int, b : int ): double = sum (x ⇒ x ∗ x ∗ x, a, b );
def sumReciprocals (a : int, b : int ): double = sum (x ⇒ 1.0/x, a, b );

Can we do even better?

Hint: a, b appears everywhere and does not seem to take part in
interesting combinations. Can we get rid of it?
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Currying

Let’s rewrite sum as follows.
def sum (f : int ⇒ double ) = {

def sumF (a : int, b : int ): double =
if (a > b ) 0
else f (a ) + sumF (a + 1, b );

sumF
}

• sum is now a function which returns another function, namely the
specialized summing function sumF which applies the f function and
sums up the results. Then we can define:

def sumInts = sum (x ⇒ x )
def sumCubes = sum (x ⇒ x ∗ x ∗ x )
def sumReciprocals = sum (x ⇒ 1.0/x )

• These functions can be applied like other functions:

> sumCubes (1, 10 ) + sumReciprocals (10, 20 )
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Curried Application

How are function-returning functions applied?

Example:

> sum (cube ) (1, 10 )
3025.0

• sum (cube ) applies sum to cube and returns the “cube-summing
function” (Hence, sum (cube ) is equivalent to sumCubes).

• This function is then applied to the arguments (1, 10 ).
• Hence, function application associates to the left:

sum (cube ) (1, 10 ) == (sum (cube ) ) (1, 10 )
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Curried Definition

The style of function-returning functions is so useful in FP, that we have
special syntax for it.

For instance, the next definition of sum is equivalent to the previous one,
but shorter:

def sum (f : int ⇒ double ) (a : int, b : int ): double =
if (a > b ) 0
else f (a ) + sum (f ) (a + 1, b )

Generally, a curried function definition

def f (args1 ) ... (argsn ) = E

where n > 1 expands to

def f (args1 ) ... (argsn−1 ) = ( def g (argsn ) = E ; g )

where g is a fresh identifier. Or, shorter:
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def f (args1 ) ... (argsn−1 ) = ( argsn ⇒ E )

Performing this step n times yields that

def f (args1 ) ... (argsn−1 ) (argsn ) = E

is equivalent to

def f = (args1 ⇒ ( args2 ⇒ ... ( argsn ⇒ E ) ... ) )

• This style of function definition and application is called currying after
its promoter, Haskell B. Curry, a logician of the 20th century.

• Actually, the idea goes back further Schönfinkel, but the name
“curried” caught on (maybe because “schönfinkeled” is harder to
pronounce.)
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Function Types

Question: Given

def sum (f : int ⇒ double ) (a : int, b : int ): double = ...

What is the type of sum?

Note that function types associate to the right. I.e.

int ⇒ int ⇒ int

is equivalent to

int ⇒ (int ⇒ int )
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Exercises:

1. The sum function uses a linear recursion. Can you write a tail-recursive
one by filling in the ??’s?

def sum (f : int ⇒ double ) (a : int, b : int ): double = {
def iter (a, result ) = {

if (?? ) ??
else iter (??, ?? )

}
iter (??, ?? )

}

2. Write a function product that computes the product of the values of
functions at points over a given range.

3. Write factorial in terms of product.

4. Can you write an even more general function which generalizes both
sum and product?
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Finding Fixed Points of Functions

• A number x is called a fixed point of a function f

f (x ) = x

• For some functions f we can locate the fixed point by beginning with
an initial guess and then applying f repeatedly.

x, f (x ), f (f (x ) ), f (f (f (x ) ) ), ...

until the value does not change anymore (or the change is within a
small tolerance).
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This leads to the following ”fixed-point finding function”:

val tolerance = 0.0001;
def isCloseEnough (x : double, y : double ) = abs ( (x − y ) / x ) < tolerance;
def fixedPoint (f : double ⇒ double ) (firstGuess : double ) = {

def iterate (guess : double ): double = {
val next = f (guess );
if (isCloseEnough (guess, next ) ) next
else iterate (next )

}
iterate (firstGuess )

}
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Square Roots Again

Here is a specification of the sqrt function.

sqrt (x ) = the y such that y ∗ y = x
= the y such that y = x / y

Hence, sqrt (x ) is a fixed point of the function (y ⇒ x / y ).

This suggests that sqrt (x ) can be computed by fixed point iteration:

def sqrt (x : double ) =
fixedPoint (y ⇒ x / y ) (1.0 )

Unfortunately, this does not converge. Let’s instrument the fixedpoint
function with a print statement which keeps track of the current guess

value:
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def fixedPoint (f : double ⇒ double ) (firstGuess : double ) = {
def iterate (guess : double ): double = {

val next = f (guess );
java.lang.System.out.println (next );
if (isCloseEnough (guess, next ) ) next
else iterate (next )

}
iterate (firstGuess )

}

Then, sqrt (2 ) yields:

2.0
1.0
2.0
1.0
2.0
...
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One way to control such oscillations is to prevent the guess from chaning
to much. This can be achieved by averaging successive values of the
original sequence:

> def sqrt (x : double ) = fixedPoint (y ⇒ (y + x / y ) / 2 ) (1.0 )
> sqrt (2.0 )

1.5
1.4166666666666665
1.4142156862745097
1.4142135623746899
1.4142135623746899

In fact, expanding the fixedPoint function yields exactly our previous
definition of fixed point from week1.
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Functions as Returned Values

• The previous examples showed that the expressive power of a language
is considerably enhanced if functions can be passed as arguments.

• The next example shows that functions which return functions can
also be very useful.

• Consider again fixed point iterations.
• We started with the observation that

√
(x) is a fixed point of the

function y ⇒ x / y.
• Then we made the iteration converge by averaging successive values.
• This technique of average dampening is so general enough that it can

be wrapped in another fucntion.

def averageDamp (f : double ⇒ double ) (x : double ) = (x + f (x ) ) / 2
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• Using averageDamp, we can reformulate the square root function as
follows.

def sqrt (x : double ) = fixedPoint (averageDamp (y ⇒ x/y ) ) (1.0 )

• This expresses the elements of the algorith as clearly as possible.

Exercise: Write a function for cube roots using fixedPoint and
averageDamp.
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Summary

• We have seen last week that functions are essential abstractions,
because they permit us to introduce general methods of computing as
explicit, named elements in our programming language.

• This week we have seen that these abstractions can be combined by
higher-order fucntions to create further abstractions.

• As programmers, we should look out for opportunities to abstract and
to reuse.

• The highest possiblelevel of abstraction is not always the best, but it
is important to know abstraction techniques, so that one can use
abstractions where approriate.
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Language Elements Seen So Far

• We have seen language elements to express types, expressions and
definitions.

• Their context free syntax is given below in extended Backus-Naur
form, where ‘ |’ denotes alternatives, [... ] denotes option (0 or 1), and
{...} denotes repetition (0 or more).
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Types:

Type = SimpleType | FunctionType
FunctionType = SimpleType ‘⇒’ Type | ‘ (’ [Types ] ‘ )’ ‘⇒’ Type
SimpleType = byte | short | char | int | long | double | float

| boolean | String
Types = Type {‘,’ Type}

Types can be:

• number types int or double (also byte, short, char, long, float),
• the type boolean with values true and false,
• the type String,
• function types.
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Expressions:

Expr = InfixExpr | FunctionExpr | if ‘ (’ Expr ‘ )’ Expr else Expr
InfixExpr = PrefixExpr | InfixExpr Operator InfixExpr
Operator = ident
PrefixExpr = [‘+’ | ‘−’ | ‘!’ | ‘˜’ ] SimpleExpr
SimpleExpr = ident | literal | SimpleExpr ‘.’ ident | Block
FunctionExpr = Bindings ‘⇒ Expr
Bindings = ident [‘:’ SimpleType ] | ‘ (’ [Binding {‘,’ Binding} ] ‘ )’
Binding = ident [‘:’ Type ]
Block = ‘{’ {Def ‘;’} Expr ‘}’
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Expressions can be:

• identifiers such as x, isGoodEnough,
• literals, such as 0, 1.0, ”abc”,
• function applications, such as sqrt (x ),
• operator applications, such as −x, @y + x@,
• selections, such as java.lang.System.out.println,
• conditionals, such as if (x < 0 ) −x else x,
• blocks, such as { val x = abs (y ) ; x ∗ 2 }
• anonymous functions, such as (x ⇒ x + 1 ).
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Definitions:
Def = FunDef | ValDef
FunDef = def ident [‘ (’ [Parameters ] ‘ )’ ] [‘:’ Type ] ‘=’ Expr
ValDef = val ident [‘:’ Type ] ‘=’ Expr
Parameter = [def ] ident ‘:’ Type
Parameters = Parameter {‘,’ Parameter}

Defintions can be:

• Function definitions such as def square (x : int ) = x ∗ x

• Value definitions such as val y = square (2 )
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