
Evaluation of Function Application

(Repetition)

One simple rule: A function application f (e1, ..., en) is evaluated by

• Evaluating exprsssions e1, ..., en to values v1, ..., vn, and
• replacing the application with the function’s body where,
• actual parameters v1, ..., vn replace formal parameters of f.

This can be formalised as a rewriting of the program itself:

def f (x1, ..., xn) = B ; ... f (v1, ..., vn)
→

def f (x1, ..., xn) = B ; ... [v1/x1, ..., vn/xn] B

Here, [v1/x1, ..., vn/xn] B stands for B with all occurrences of xi replaced
by vi.

[v1/x1, ..., vn/xn] is called a substitution.

1

Rewriting Example:

Consider gcd:

def gcd (a : int, b : int): int = if (b == 0) a else gcd (b, a % b)

Then gcd (14, 21) evaluates as follows:

gcd (14, 21)
→ if (21 == 0) 14 else gcd (21, 14 % 21)
→ if (False) 14 else gcd (21, 14 % 21)
→ gcd (21, 14 % 21)
→ gcd (21, 14)
→ if (14 == 0) 21 else gcd (14, 21 % 14)
→ → gcd (14, 21 % 14)
→ gcd (14, 7)
→ if (7 == 0) 14 else gcd (7, 14 % 7)
→ → gcd (7, 14 % 7)
→ gcd (7, 0)
→ if (0 == 0) 7 else gcd (0, 7 % 0)
→ → 7

2

Another rewriting example:

Consider factorial:

def factorial (n : int): int = if (n == 0) 1 else n ∗ factorial (n − 1)

Then factorial (5) rewrites as follows:

factorial (5)
→ if (5 == 0) 1 else 5 ∗ factorial (5 − 1)
→ 5 ∗ factorial (5 − 1)
→ 5 ∗ factorial (4)
→ ... → 5 ∗ (4 ∗ factorial (3))
→ ... → 5 ∗ (4 ∗ (3 ∗ factorial (2)))
→ ... → 5 ∗ (4 ∗ (3 ∗ (2 ∗ factorial (1))))
→ ... → 5 ∗ (4 ∗ (3 ∗ (2 ∗ (1 ∗ factorial (0))))
→ ... → 5 ∗ (4 ∗ (3 ∗ (2 ∗ (1 ∗ 1))))
→ ... → 120

What differences are there between the two rewrite sequences?

3

Tail Recursion

Implementation note: If a function calls itself as its last action, the
function’s stack frame can be re-used. This is called “tail recursion”.

⇒ Tail-recursive functions are iterative processes.

More generally, if the last action of a function is a call to another (possible
the same) function, only a single stack frame is needed for both functions.
Such calls are called “tail calls”.

Exercise: Design a tail-recursive version of factorial.

4

Value Definitions

• A definition

def f = expr

introduces f as a name for the expression expr.
• expr will be evaluated every time the name f is used.
• In other words, def f introduces a parameterless function.
• By contrast a value definition

val x = expr

introduces x as a name for the value of expression expr.
• expr will be evaluated once at the point of the value definition.

5

Example:

> val x = 2
val x : int = 2
> val y = square (x)
val y : int = 4
> y
4

Example:

> def loop : int = loop
def loop : int
> val x : int = loop (infinite loop)

6

First-Class Functions

Functional languages treat functions as “first-class values”.

That is, like any other value, a function may be passed as a parameter or
returned as a result.

This provides a flexible mechanism for program composition.

Functions which take other functions as parameters or return them as
results are called “higher-order” functions.

7

Example:

Sum integers between a and b:

def sumInts (a : int, b : int): double =
if (a > b) 0 else a + sumInts (a + 1, b)

Sum the cubes of all integers between a and b:

def cube (x : int): double = x ∗ x ∗ x
def sumCubes (a : int, b : int): double =

if (a > b) 0 else cube (a) + sumCubes (a + 1, b)

Sum reciprocals between a and b

def sumReciprocals (a : int, b : int): double =
if (a > b) 0 else 1.0 / a + sumReciprocals (a + 1, b)

These are all special cases of
∑b

a f(n) for different values of f .

Can we factor out the common pattern?

8

Summation with a higher-order function

Define:
def sum (f : int ⇒ double, a : int, b : int): double = {

if (a > b) 0
else f (a) + sum (f, a + 1, b)

}

Then we can write:
def sumInts (a : int, b : int): double = sum (id, a, b);
def sumCubes (a : int, b : int): double = sum (cube, a, b);
def sumReciprocals (a : int, b : int): double = sum (reciprocal, a, b);

where
def id (x : int): double = x;
def cube (x : int): double = x ∗ x ∗ x;
def reciprocal (x : int): double = 1.0/x;

The type int ⇒ double is the type of functions that take arguments of type
int and return results of type double.

9

Anonymous functions

• Parameterisation by functions tends to create many small functions.
• Sometimes it is cumbersome to have to define these functions using

def.
• A shorter notation makes use of anonymous functions.
• Example: the function which cubes its integer input is written

x : int ⇒ x ∗ x ∗ x

Here, x : int is the function’s parameter, and x ∗ x ∗ x is its body.
• The parameter type can be omitted if it is clear (to the compiler) from

the context.
• If there are several parameters, they have to be included in

parentheses. Example:

(x : int, y : int) ⇒ x + y

10

Anonymous Functions Are Syntactic Sugar

• Generally, (x1 : T1, ..., xn : Tn) ⇒ E defines a function which maps its
parameters x1, ..., xn to the result of the expression E (where E may
refer to x1, ..., xn).

• An anonymous function (x1 : T1, ..., xn : Tn ⇒ E) can always be
expressed using a def as follows:

{ def f (x1 : T1, ..., xn : Tn) = E ; f }

where f is fresh name which is used nowhere else in the program.
• We also say, anonymous functions are “syntactic sugar”.

11

Summation with Anonymous Functions

Now we can write shorter:
def sumInts (a : int, b : int): double = sum (x ⇒ x, a, b);
def sumCubes (a : int, b : int): double = sum (x ⇒ x ∗ x ∗ x, a, b);
def sumReciprocals (a : int, b : int): double = sum (x ⇒ 1.0/x, a, b);

Can we do even better?

Hint: a, b appears everywhere and does not seem to take part in
interesting combinations. Can we get rid of it?

12

Currying

Let’s rewrite sum as follows.
def sum (f : int ⇒ double) = {

def sumF (a : int, b : int): double =
if (a > b) 0
else f (a) + sumF (a + 1, b);

sumF
}

• sum is now a function which returns another function, namely the
specialized summing function sumF which applies the f function and
sums up the results. Then we can define:

def sumInts = sum (x ⇒ x)
def sumCubes = sum (x ⇒ x ∗ x ∗ x)
def sumReciprocals = sum (x ⇒ 1.0/x)

• These functions can be applied like other functions:

> sumCubes (1, 10) + sumReciprocals (10, 20)

13

Curried Application

How are function-returning functions applied?

Example:

> sum (cube) (1, 10)
3025.0

• sum (cube) applies sum to cube and returns the “cube-summing
function” (Hence, sum (cube) is equivalent to sumCubes).

• This function is then applied to the arguments (1, 10).
• Hence, function application associates to the left:

sum (cube) (1, 10) == (sum (cube)) (1, 10)

14

Curried Definition

The style of function-returning functions is so useful in FP, that we have
special syntax for it.

For instance, the next definition of sum is equivalent to the previous one,
but shorter:

def sum (f : int ⇒ double) (a : int, b : int): double =
if (a > b) 0
else f (a) + sum (f) (a + 1, b)

Generally, a curried function definition

def f (args1) ... (argsn) = E

where n > 1 expands to

def f (args1) ... (argsn−1) = (def g (argsn) = E ; g)

where g is a fresh identifier. Or, shorter:

15

def f (args1) ... (argsn−1) = (argsn ⇒ E)

Performing this step n times yields that

def f (args1) ... (argsn−1) (argsn) = E

is equivalent to

def f = (args1 ⇒ (args2 ⇒ ... (argsn ⇒ E) ...))

• This style of function definition and application is called currying after
its promoter, Haskell B. Curry, a logician of the 20th century.

• Actually, the idea goes back further Schönfinkel, but the name
“curried” caught on (maybe because “schönfinkeled” is harder to
pronounce.)

16

Function Types

Question: Given

def sum (f : int ⇒ double) (a : int, b : int): double = ...

What is the type of sum?

Note that function types associate to the right. I.e.

int ⇒ int ⇒ int

is equivalent to

int ⇒ (int ⇒ int)

17

Exercises:

1. The sum function uses a linear recursion. Can you write a tail-recursive
one by filling in the ??’s?

def sum (f : int ⇒ double) (a : int, b : int): double = {
def iter (a, result) = {

if (??) ??
else iter (??, ??)

}
iter (??, ??)

}

2. Write a function product that computes the product of the values of
functions at points over a given range.

3. Write factorial in terms of product.

4. Can you write an even more general function which generalizes both
sum and product?

18

Finding Fixed Points of Functions

• A number x is called a fixed point of a function f

f (x) = x

• For some functions f we can locate the fixed point by beginning with
an initial guess and then applying f repeatedly.

x, f (x), f (f (x)), f (f (f (x))), ...

until the value does not change anymore (or the change is within a
small tolerance).

19

This leads to the following ”fixed-point finding function”:

val tolerance = 0.0001;
def isCloseEnough (x : double, y : double) = abs ((x − y) / x) < tolerance;
def fixedPoint (f : double ⇒ double) (firstGuess : double) = {

def iterate (guess : double): double = {
val next = f (guess);
if (isCloseEnough (guess, next)) next
else iterate (next)

}
iterate (firstGuess)

}

20

Square Roots Again

Here is a specification of the sqrt function.

sqrt (x) = the y such that y ∗ y = x
= the y such that y = x / y

Hence, sqrt (x) is a fixed point of the function (y ⇒ x / y).

This suggests that sqrt (x) can be computed by fixed point iteration:

def sqrt (x : double) =
fixedPoint (y ⇒ x / y) (1.0)

Unfortunately, this does not converge. Let’s instrument the fixedpoint
function with a print statement which keeps track of the current guess

value:

21

def fixedPoint (f : double ⇒ double) (firstGuess : double) = {
def iterate (guess : double): double = {

val next = f (guess);
java.lang.System.out.println (next);
if (isCloseEnough (guess, next)) next
else iterate (next)

}
iterate (firstGuess)

}

Then, sqrt (2) yields:

2.0
1.0
2.0
1.0
2.0
...

22

One way to control such oscillations is to prevent the guess from chaning
to much. This can be achieved by averaging successive values of the
original sequence:

> def sqrt (x : double) = fixedPoint (y ⇒ (y + x / y) / 2) (1.0)
> sqrt (2.0)

1.5
1.4166666666666665
1.4142156862745097
1.4142135623746899
1.4142135623746899

In fact, expanding the fixedPoint function yields exactly our previous
definition of fixed point from week1.

23

Functions as Returned Values

• The previous examples showed that the expressive power of a language
is considerably enhanced if functions can be passed as arguments.

• The next example shows that functions which return functions can
also be very useful.

• Consider again fixed point iterations.
• We started with the observation that

√
(x) is a fixed point of the

function y ⇒ x / y.
• Then we made the iteration converge by averaging successive values.
• This technique of average dampening is so general enough that it can

be wrapped in another fucntion.

def averageDamp (f : double ⇒ double) (x : double) = (x + f (x)) / 2

24

• Using averageDamp, we can reformulate the square root function as
follows.

def sqrt (x : double) = fixedPoint (averageDamp (y ⇒ x/y)) (1.0)

• This expresses the elements of the algorith as clearly as possible.

Exercise: Write a function for cube roots using fixedPoint and
averageDamp.

25

Summary

• We have seen last week that functions are essential abstractions,
because they permit us to introduce general methods of computing as
explicit, named elements in our programming language.

• This week we have seen that these abstractions can be combined by
higher-order fucntions to create further abstractions.

• As programmers, we should look out for opportunities to abstract and
to reuse.

• The highest possiblelevel of abstraction is not always the best, but it
is important to know abstraction techniques, so that one can use
abstractions where approriate.

26

Language Elements Seen So Far

• We have seen language elements to express types, expressions and
definitions.

• Their context free syntax is given below in extended Backus-Naur
form, where ‘ |’ denotes alternatives, [...] denotes option (0 or 1), and
{...} denotes repetition (0 or more).

27

Types:

Type = SimpleType | FunctionType
FunctionType = SimpleType ‘⇒’ Type | ‘ (’ [Types] ‘)’ ‘⇒’ Type
SimpleType = byte | short | char | int | long | double | float

| boolean | String
Types = Type {‘,’ Type}

Types can be:

• number types int or double (also byte, short, char, long, float),
• the type boolean with values true and false,
• the type String,
• function types.

28

Expressions:

Expr = InfixExpr | FunctionExpr | if ‘ (’ Expr ‘)’ Expr else Expr
InfixExpr = PrefixExpr | InfixExpr Operator InfixExpr
Operator = ident
PrefixExpr = [‘+’ | ‘−’ | ‘!’ | ‘˜’] SimpleExpr
SimpleExpr = ident | literal | SimpleExpr ‘.’ ident | Block
FunctionExpr = Bindings ‘⇒ Expr
Bindings = ident [‘:’ SimpleType] | ‘ (’ [Binding {‘,’ Binding}] ‘)’
Binding = ident [‘:’ Type]
Block = ‘{’ {Def ‘;’} Expr ‘}’

29

Expressions can be:

• identifiers such as x, isGoodEnough,
• literals, such as 0, 1.0, ”abc”,
• function applications, such as sqrt (x),
• operator applications, such as −x, @y + x@,
• selections, such as java.lang.System.out.println,
• conditionals, such as if (x < 0) −x else x,
• blocks, such as { val x = abs (y) ; x ∗ 2 }
• anonymous functions, such as (x ⇒ x + 1).

30

Definitions:
Def = FunDef | ValDef
FunDef = def ident [‘ (’ [Parameters] ‘)’] [‘:’ Type] ‘=’ Expr
ValDef = val ident [‘:’ Type] ‘=’ Expr
Parameter = [def] ident ‘:’ Type
Parameters = Parameter {‘,’ Parameter}

Defintions can be:

• Function definitions such as def square (x : int) = x ∗ x

• Value definitions such as val y = square (2)

31

