Evaluation of Function Application (Repetition)

One simple rule: A function application $f(e_1, ..., e_n)$ is evaluated by

- Evaluating exprsssions $e_1, ..., e_n$ to values $v_1, ..., v_n$, and
- replacing the application with the function's body where,
- actual parameters $v_1, ..., v_n$ replace formal parameters of f.

This can be formalised as a rewriting of the program itself:

$$def f (x_1, ..., x_n) = B ; ... f (v_1, ..., v_n)$$

$$def f (x_1, ..., x_n) = B ; ... [v_1/x_1, ..., v_n/x_n] B$$

Here, $[v_1/x_1, ..., v_n/x_n]$ B stands for B with all occurrences of x_i replaced by v_i .

 $[v_1/x_1, ..., v_n/x_n]$ is called a *substitution*.

Rewriting Example:

```
Consider gcd:
     \operatorname{def} \gcd(a:\operatorname{int}, b:\operatorname{int}):\operatorname{int} = \operatorname{if} (b == 0) \ a \ \operatorname{else} \gcd(b, a\% b)
Then gcd(14, 21) evaluates as follows:
                    gcd(14, 21)
                   if (21 == 0) 14 else gcd(21, 14 \% 21)
                   if (False) 14 else gcd (21, 14 % 21)
                   gcd (21, 14 % 21)
                   gcd(21, 14)
     \rightarrow if (14 == 0) 21 else gcd(14, 21 \% 14)
     \rightarrow \rightarrow gcd(14, 21 \% 14)
     \rightarrow gcd(14, 7)
     \rightarrow if (7 == 0) 14 else gcd(7, 14 \% 7)
     \rightarrow \rightarrow gcd(7, 14 \% 7)
     \rightarrow gcd(7, 0)
     \rightarrow if (0 == 0) 7 else gcd(0, 7 \% 0)
```

Another rewriting example:

Consider factorial:

```
def factorial (n: int): int = if (n == 0) 1 else n * factorial (n - 1)
```

Then factorial (5) rewrites as follows:

```
factorial(5)

→ if (5 == 0) 1 else 5 * factorial(5 - 1)

→ 5 * factorial(5 - 1)

→ 5 * factorial(4)

→ ... → 5 * (4 * factorial(3))

→ ... → 5 * (4 * (3 * factorial(2)))

→ ... → 5 * (4 * (3 * (2 * factorial(1))))

→ ... → 5 * (4 * (3 * (2 * (1 * factorial(0))))

→ ... → 5 * (4 * (3 * (2 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 * (1 *
```

What differences are there between the two rewrite sequences?

Tail Recursion

Implementation note: If a function calls itself as its last action, the function's stack frame can be re-used. This is called "tail recursion".

 \Rightarrow Tail-recursive functions are iterative processes.

More generally, if the last action of a function is a call to another (possible the same) function, only a single stack frame is needed for both functions. Such calls are called "tail calls".

Exercise: Design a tail-recursive version of factorial.

Value Definitions

• A definition

$$def f = expr$$

introduces f as a name for the expression expr.

- expr will be evaluated every time the name f is used.
- In other words, def introduces a parameterless function.
- By contrast a value definition

$$val x = expr$$

introduces x as a name for the *value* of expression expr.

• expr will be evaluated once at the point of the value definition.

Example:

```
> val x = 2
val x: int = 2
> val y = square(x)
val y: int = 4
> y
4
```

Example:

```
> def loop: int = loop
def loop: int
```

> val x: int = loop (infinite loop)

First-Class Functions

Functional languages treat functions as "first-class values".

That is, like any other value, a function may be passed as a parameter or returned as a result.

This provides a flexible mechanism for program composition.

Functions which take other functions as parameters or return them as results are called "higher-order" functions.

Example:

```
Sum integers between a and b:
    def sumInts (a: int, b: int): double =
       if (a > b) 0 else a + sumInts(a + 1, b)
Sum the cubes of all integers between a and b:
    def cube (x: int): double = x * x * x
    def sumCubes (a: int, b: int): double =
       if (a > b) 0 else cube (a) + sumCubes (a + 1, b)
Sum reciprocals between a and b
    def sumReciprocals (a: int, b: int): double =
       if (a > b) 0 else 1.0 / a + sumReciprocals(a + 1, b)
These are all special cases of \sum_{a}^{b} f(n) for different values of f.
Can we factor out the common pattern?
```

Summation with a higher-order function

```
Define:
     def sum (f: int \Rightarrow double, a: int, b: int): double = {
        if (a > b) 0
        else f(a) + sum(f, a + 1, b)
Then we can write:
     def sumInts (a: int, b: int): double = sum(id, a, b);
     def sumCubes (a: int, b: int): double = sum(cube, a, b);
     def sumReciprocals (a: int, b: int): double = sum (reciprocal, a, b);
where
     \operatorname{def} \operatorname{id}(x:\operatorname{int}):\operatorname{double}=x;
     def cube(x: int): double = x * x * x;
     def reciprocal (x: int): double = 1.0/x;
The type int \Rightarrow double is the type of functions that take arguments of type
int and return results of type double.
```

Anonymous functions

- Parameterisation by functions tends to create many small functions.
- Sometimes it is cumbersome to have to define these functions using def.
- A shorter notation makes use of anonymous functions.
- Example: the function which cubes its integer input is written

```
x: int \Rightarrow x * x * x
```

Here, x: int is the function's parameter, and x * x * x is its body.

- The parameter type can be omitted if it is clear (to the compiler) from the context.
- If there are several parameters, they have to be included in parentheses. Example:

```
(x: int, y: int) \Rightarrow x + y
```

Anonymous Functions Are Syntactic Sugar

- Generally, $(x_1: T_1, ..., x_n: T_n) \Rightarrow E$ defines a function which maps its parameters $x_1, ..., x_n$ to the result of the expression E (where E may refer to $x_1, ..., x_n$).
- An anonymous function $(x_1: T_1, ..., x_n: T_n \Rightarrow E)$ can always be expressed using a **def** as follows:

```
\{ def f (x_1: T_1, ..., x_n: T_n) = E; f \}
```

where f is fresh name which is used nowhere else in the program.

• We also say, anonymous functions are "syntactic sugar".

Summation with Anonymous Functions

Now we can write shorter:

```
def sumInts (a: int, b: int): double = sum (x \Rightarrow x, a, b);

def sumCubes (a: int, b: int): double = sum (x \Rightarrow x * x * x, a, b);

def sumReciprocals (a: int, b: int): double = sum (x \Rightarrow x * x * x, a, b);
```

Can we do even better?

Hint: a, b appears everywhere and does not seem to take part in interesting combinations. Can we get rid of it?

Currying

```
Let's rewrite sum as follows.

def sum (f: int \Rightarrow double) = \{
def sum F(a: int, b: int): double =
if (a > b) 0
else f(a) + sum F(a + 1, b);
sum F
```

• sum is now a function which returns another function, namely the specialized summing function sumF which applies the f function and sums up the results. Then we can define:

```
def sumInts = sum (x \Rightarrow x)

def sumCubes = sum (x \Rightarrow x * x * x)

def sumReciprocals = sum (x \Rightarrow 1.0/x)
```

• These functions can be applied like other functions:

```
> sumCubes(1, 10) + sumReciprocals(10, 20)
```

Curried Application

How are function-returning functions applied?

Example:

```
> sum (cube) (1, 10)
3025.0
```

- sum (cube) applies sum to cube and returns the "cube-summing function" (Hence, sum (cube) is equivalent to sum Cubes).
- This function is then applied to the arguments (1, 10).
- Hence, function application associates to the left:

```
sum(cube)(1, 10) == (sum(cube))(1, 10)
```

Curried Definition

The style of function-returning functions is so useful in FP, that we have special syntax for it.

For instance, the next definition of *sum* is equivalent to the previous one, but shorter:

```
def sum (f: int \Rightarrow double) (a: int, b: int): double = if (a > b) 0 else f(a) + sum(f)(a + 1, b)
```

Generally, a curried function definition

$$\operatorname{def} f (\operatorname{args}_1) \dots (\operatorname{args}_n) = E$$

where n > 1 expands to

$$\operatorname{def} f (\operatorname{args}_1) \dots (\operatorname{args}_{n-1}) = (\operatorname{def} g (\operatorname{args}_n) = E ; g)$$

where g is a fresh identifier. Or, shorter:

```
\operatorname{def} f (\operatorname{args}_1) \dots (\operatorname{args}_{n-1}) = (\operatorname{args}_n \Rightarrow E)
```

Performing this step n times yields that

$$\operatorname{def} f (\operatorname{args}_1) \dots (\operatorname{args}_{n-1}) (\operatorname{args}_n) = E$$

is equivalent to

```
\operatorname{def} f = (\operatorname{arg} s_1 \Rightarrow (\operatorname{arg} s_2 \Rightarrow \dots (\operatorname{arg} s_n \Rightarrow E) \dots))
```

- This style of function definition and application is called *currying* after its promoter, Haskell B. Curry, a logician of the 20th century.
- Actually, the idea goes back further Schönfinkel, but the name "curried" caught on (maybe because "schönfinkeled" is harder to pronounce.)

Function Types

Question: Given

 $def sum (f: int \Rightarrow double) (a: int, b: int): double = ...$

What is the type of sum?

Note that function types associate to the *right*. I.e.

$$int \Rightarrow int \Rightarrow int$$

is equivalent to

$$int \Rightarrow (int \Rightarrow int)$$

Exercises:

1. The sum function uses a linear recursion. Can you write a tail-recursive one by filling in the ??'s?

```
def sum (f: int ⇒ double) (a: int, b: int): double = {
    def iter (a, result) = {
        if (??) ??
        else iter (??, ??)
    }
    iter (??, ??)
}
```

- 2. Write a function *product* that computes the product of the values of functions at points over a given range.
- 3. Write factorial in terms of product.
- 4. Can you write an even more general function which generalizes both sum and product?

Finding Fixed Points of Functions

- A number x is called a fixed point of a function f f(x) = x
- For some functions f we can locate the fixed point by beginning with an initial guess and then applying f repeatedly.

$$x, f(x), f(f(x)), f(f(f(x))), \dots$$

until the value does not change anymore (or the change is within a small tolerance).

This leads to the following "fixed-point finding function":

```
val tolerance = 0.0001;
def isCloseEnough(x: double, y: double) = abs((x - y) / x) < tolerance;
def fixedPoint(f: double \Rightarrow double) (firstGuess: double) = {
    def iterate(guess: double): double = {
      val next = f(guess);
      if (isCloseEnough(guess, next)) next
      else iterate(next)
    }
    iterate(firstGuess)
}
```

Square Roots Again

Here is a *specification* of the *sqrt* function.

```
sqrt(x) = the y such that y * y = x
= the y such that y = x / y
```

Hence, sqrt(x) is a fixed point of the function $(y \Rightarrow x / y)$.

This suggests that sqrt(x) can be computed by fixed point iteration:

```
def \ sqrt (x: double) = fixedPoint (y \Rightarrow x / y) (1.0)
```

Unfortunately, this does not converge. Let's instrument the fixed point function with a print statement which keeps track of the current guess value:

```
def fixedPoint (f: double \Rightarrow double) (firstGuess: double) = {
        def iterate (guess: double): double = \{
           val next = f(guess);
          java.lang.System.out.println(next);
           if (isCloseEnough (guess, next)) next
           else iterate(next)
       iterate(firstGuess)
Then, sqrt(2) yields:
       2.0
        1.0
       2.0
       1.0
       2.0
```

One way to control such oscillations is to prevent the guess from chaning to much. This can be achieved by *averaging* successive values of the original sequence:

```
> def sqrt(x: double) = fixedPoint(y \Rightarrow (y + x / y) / 2) (1.0)
> sqrt(2.0)
1.5
1.41666666666665
1.4142135623746899
1.4142135623746899
```

In fact, expanding the *fixedPoint* function yields exactly our previous definition of fixed point from week1.

Functions as Returned Values

- The previous examples showed that the expressive power of a language is considerably enhanced if functions can be passed as arguments.
- The next example shows that functions which return functions can also be very useful.
- Consider again fixed point iterations.
- We started with the observation that $\sqrt(x)$ is a fixed point of the function $y \Rightarrow x / y$.
- Then we made the iteration converge by averaging successive values.
- This technique of average dampening is so general enough that it can be wrapped in another fucntion.

def averageDamp (f: double \Rightarrow double) (x: double) = (x + f(x)) / 2

• Using average Damp, we can reformulate the square root function as follows.

 $def \ sqrt(x: double) = fixedPoint(averageDamp(y \Rightarrow x/y))(1.0)$

• This expresses the elements of the algorith as clearly as possible.

Exercise: Write a function for cube roots using fixedPoint and averageDamp.

Summary

- We have seen last week that functions are essential abstractions, because they permit us to introduce general methods of computing as explicit, named elements in our programming language.
- This week we have seen that these abstractions can be combined by higher-order functions to create further abstractions.
- As programmers, we should look out for opportunities to abstract and to reuse.
- The highest possible level of abstraction is not always the best, but it is important to know abstraction techniques, so that one can use abstractions where approriate.

Language Elements Seen So Far

- We have seen language elements to express types, expressions and definitions.
- Their context free syntax is given below in extended Backus-Naur form, where '|' denotes alternatives, [...] denotes option (0 or 1), and {...} denotes repetition (0 or more).

Types:

```
Type = SimpleType | FunctionType

FunctionType = SimpleType '\Rightarrow' Type | '(' [Types] ')' '\Rightarrow' Type

SimpleType = byte | short | char | int | long | double | float

| boolean | String

Types = Type {',' Type}
```

Types can be:

- number types int or double (also byte, short, char, long, float),
- the type boolean with values true and false,
- the type String,
- function types.

Expressions:

Expressions can be:

- identifiers such as x, isGoodEnough,
- literals, such as 0, 1.0, "abc",
- function applications, such as sqrt(x),
- operator applications, such as -x, @y + x@,
- selections, such as java.lang.System.out.println,
- conditionals, such as **if** (x < 0) x **else** x,
- blocks, such as $\{ val \ x = abs(y) ; x * 2 \}$
- anonymous functions, such as $(x \Rightarrow x + 1)$.

Definitions:

```
Def = FunDef | ValDef

FunDef = def ident ['(' [Parameters] ')'] [':' Type] '=' Expr

ValDef = val ident [':' Type] '=' Expr

Parameter = [def] ident ':' Type

Parameters = Parameter {',' Parameter}
```

Defintions can be:

- Function definitions such as $\operatorname{def} \operatorname{square}(x:\operatorname{int}) = x * x$
- Value definitions such as val y = square(2)