
Week 12: Interpreting Lisp

We now discuss an interpreter for Lisp.

This is useful for two reasons.

1. Many computer systems have a small language inside, which often is
interpreted.

2. The interpreter tells us in a precise way how Lisp programs in
particular, and functional programs in general, are evaluated.
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Interpreter Design

The interpreter takes as input a Scheme– expression (of type Data) which
is one a the following,

• a number,
• a string,
• a symbol
• a list of expressions

The interpreter returns another Data expression as output, which
represents a Lisp value.

For instance, when applied to the input expression

List(’*, 2, 7)

the interpreter should return the output expression

14
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But now a question poses itself: When the interpreter input is a symbol,
such as ’x, what should the output be?

It depends whether the name x is defined at the point of evaluating the
symbol, and, if yes, to what value it is bound.

The interpreter needs to keep track of defined names in an environment.
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Environments

An environment is a data structure that maps names to Lisp values.

The two fundamental operations on an environment are:

• lookup: Given a name, yield the value associated with the name.
• extend: Given a name/value binding, extend the environment with the

binding, yielding a new environment.

This leads to the following class design:

class Environment {
def lookup (n : String ): Data = ...
def extend (name : String, v : Data ): Environement = ...

}

We also need to define a value EmptyEnvironment, which represents the
empty environment.
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Various data structures can be used for implementing environments, with
different performance tradeoffs. (Examples?)

We use here a direct approach, without any auxiliary data structure.

abstract class Environment {
def lookup (n : String ): Data;
def extend (name : String, v : Data ) = new Environment {

def lookup (n : String ): Data =
if (n == name ) v else Environment.this.lookup (n );

}
}
val EmptyEnvironment = new Environment {

def lookup (n : String ): Data = error (”undefined : ” + n );
}

This is short and easy, but the lookup method takes time proportional to
the number of bindings in an environment.
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Note: The construct Environment.this refers to the enclosing self-object
which is an instance of the Environment class (as opposed to the object
created from the enclosing anonymous class).
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Predefined Functions

There also needs to be some way to interpret “standard” symbols such as
*. We can use an initial environment to record the values of such symbols.

But what should be the value of *? It is neither a number, nor a string,
symbol or list!

We need to create a data type, which represents functions on Lisp

expressions:

case class Lambda (f : List [Data ] ⇒ Data );

For instance, the * operation would be bound to the value:

Lambda { case List (arg1 : int, arg2 : int ) ⇒ arg1 ∗ arg2 }
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Aside: the example shows the power of pattern matching – in a single
expression, we can specify that

• the argument list must have length two, and that
• both arguments must be integers,
• and we make the elements of both arguments accessible under names

arg1 and arg2.

Note that a case expression is itself a function, which matches Lambda’s
argument type List [Data ] ⇒ Data.

8



The Evaluator

We now present the Lisp evaluator.

It takes as input internal representations of Lisp expressions. These are:

• Atoms: symbols, numbers, strings.
• Combinations, which themselves can be special forms or applications.

In a first step, we simplify Lisp’s special form for name bindings (e.g.
define, let, letrec, lambda, ...) to just val (with the Scala meaning)
and lambda.

So, instead of Lisp’s (define (add m n) (+ m n)) <rest of code>

we would write (val add (lambda (m n)(+ m n)) <rest of code>) .

Later on, we will add to this Scala’s def, but only for parameterless
functions (since there is already lambda to express parameterization).
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The Evaluator Function

def eval (x : Data, env : Environment ): Data = x match {
case y : String ⇒ x
case y : int ⇒ x
case Lambda ( ) ⇒ x
case Symbol (name ) ⇒

env lookup name
case ’val :: Symbol (name ) :: expr :: rest :: Nil ⇒

eval (rest, env.extend (name, eval (expr, env ) ) )
case ’if :: cond :: thenpart :: elsepart :: Nil ⇒

if (asBoolean (eval (cond, env ) ) ) eval (thenpart, env )
else eval (elsepart, env )

case ’quote :: y :: Nil ⇒ y
case ’lambda :: params :: body :: Nil ⇒

mkLambda (params, body, env )
case operator :: operands ⇒

apply (eval (operator, env ), operands map (x ⇒ eval (x, env ) ) )
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Explanations

• If the input expression x is a number, string or function, we return the
expression itself.

• Otherwise, if the expression is a symbol, we return the result of
looking up the symbol in the current environment.

• Otherwise, if the expression is a special form
(val <name> <expr> <rest>)

we evaluate the <rest> expression in an environment extended by the
binding of <name> to the result of evaluating <expr>.

• Otherwise, if the expression is a special form
(if <cond> <thenpart> <elsepart>)

we evaluate <cond>. If the result is the number 0, we continue with
the evaluation of <thenpart>; otherwise with the evaluation of
<elsepart>. The test uses the function asBoolean, which is defined as
follows.
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def asBoolean (x : Data ): boolean =
if (x == 0 ) false else true;

• Otherwise, if the expression is a special form
(quote <expr>)

we return expr as the result of the evaluation.
• Otherwise, if the expression is a special form

(lambda <params> <body>)

we create a new function using the mkLambda operation (see below).
• Finally, if the expression is a combination which is none of the special

forms above, it must be a function application.

In this case, we evaluate the application’s operator and all its
operands, and then apply the operator value to the operand values.
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The apply function checks that the operator is indeed a Lambda node and
then applies its associated operation to the argument lists.

def apply (fn : Data, args : List [Data ] ): Data = fn match {
case Lambda (f ) ⇒ f (args );
case ⇒ error (”application of non−function : ” + fn + ” to ” + args );

}

That’s all, except that we still need to define how a lambda expression gets
converted to a function that can be applied.
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Making Functions

The conversion from Lisp expression to Scala function uses the auxiliary
function mkLambda.

The call mkLambda (params, body, env ) yields a Lambda object which
contains a (Scala-)function.

That function maps argument lists that correspond to the formal
parameter list params to the result of evaluating body in env.

It works as follows:

def mkLambda (params : Data, body : Data, env : Environment ): Data = {
val ps : List [String ] = asList (params ) map {

case Symbol (name ) ⇒ name
case ⇒ error (”illegal parameter list” );

}

Lambda (args ⇒ eval (expr, extendEnv (env, ps, args ) ) ) }
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• That is, an application of the function causes the body expression to
be evaluated in an environment which is extended by bindings that
map formal parameter names to corresponding actual argument
values.

• Note the analogy to the substitution model, where formal parameters
where replaced in body by actual arguments args.

• We can think of an environment as a deferred substitution: Rather
than doing the replacement immediately, we perform it when a symbol
is looked up in the environment.

• It would be also possible to write an interpreter with substitutions
instead of environments; but this interpreter would be more
complicated and less efficient.
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Note: The asList function casts an arbitrary object to a list. It is defined
as follows:

def asList (x : Data ): List [Data ] =
if (x is List [Data ] ) x as List [Data ]
else lispError (”malformed list : ” + x );

is and as are Scala’s constructs for type tests and type casts.
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It remains to define the function extendEnv which extends the environment
by a list of bindings of formal parameter names to argument values.

This function is defined as follows.
def extendEnv (env : Environment,

ps : List [String ], args : List [Data ] ): Environment =
Pair (ps, args ) match {

case Pair (List ( ), List ( ) ) ⇒
env

case Pair (p :: ps1, arg :: args1 ) ⇒
extendEnv (env.extend (p, arg ), ps1, args1 )

case ⇒
error (”wrong number of arguments” )

}

• The function checks that the two lists of parameter names and
argument values have the same length.

• For each corresponding name/value pair, it applies the environment’s
extend method.
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Environments for Lambdas

Note that a mkLambda operation keeps a reference to the environment
that was current when the function was built.

It then uses this environment in an application.

Here is an example of the evolution of the environments during a
computation of the program

def f (x : Int ) = g (y ⇒ x + y )
def g (x : Int ⇒ Int ) = x (2 );
f (1 )

(see blackboard).
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Dynamic Scoping in Original Lisp

The original version of Lisp used instead a global stack for environments.

When entering a function, bindings for parameters and local variables were
pushed.

When leaving a function, the stack was cleared again.

But this makes higher-order function behave very strangely!

For instance, the result of evaluating f (1 ) in the program above would
result in a run-time error, because the anonymous function y ⇒ x + y

accesses the latest value of x on the stack, which is a function, not a value.

This problem with this particular program could be solved by renaming so
that all parameter names are unique.
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For instance, if we rename to:

def f (x : Int ) = g (y ⇒ x + y )
def g (z : Int ⇒ Int ) = z (2 );
f (1 )

the program returns 3, as expected.

But the following program shows that one cannot always avoid problems
by renaming.

def iterate (n : Int, f : Int ⇒ Int ) =
if (n == 0 ) x ⇒ x
else nTimes (n−1, x ⇒ f (x ) )

That function is supposed compose its parameter f n-times with itself.

Question: What is the effect of evaluating this function with original Lisp’s
stack-environment?
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Another problem with original Lisp’s scheme is that it is very dangerous to
return functions. Consider:

def incrementer (x : Int ) = y ⇒ y + x

Question: What is the effect of incrementer (2 ) (3 )?

The implementation scheme of original Lisp is called dynamic scoping.

This means that the association of an identifier with its value is
determined dynamically – it depends on the shape of the environment at
the time the value is referenced.

Dynamic scoping offers interesting possibilities, but it severely impairs the
usability of higher-order functions.

Therefore, more modern versions of Lisp such as Scheme have static
scoping, just like Scala.

Older versions, including elisp still have dynamic scoping.

Common Lisp, of course, has both.
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Handling Recursion

We have seen that original Lisp’s environment scheme ran into problems.

But ours does as well, when we add recursion!

Recursion is introduced by adding to our interpreter a special form (def

<name> <expr> <rest>).

def is like val except that it defines a function <name> which can call itself
recursively.
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The method for handling val in the interpreter,

case ’val :: Symbol (name ) :: expr :: rest :: Nil ⇒
eval (rest, env.extend (name, eval (expr, env ) ) )

does not work for def, for two reasons:

• expr is evaluated too early; it should be evaluated only when name is
accessed.

• name does not form part of the environment visible to expr, so
recursion is impossible.

We solve these problems by adding a new method extendRec which
extends an environment with a binding containing a possible recursive
computation.
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Evaluation of def

Here is how def can then be treated:
case ’def :: Symbol (name ) :: expr :: rest :: Nil ⇒

eval (rest, env.extendRec (name, (env1 ⇒ eval (expr, env1 ) ) ) )

• This solves the problem of premature evaluation, because we now
extend the environment with a function that evaluates expr, not the
result of the evaluation of expr.

• Furthermore, we make recursion possible by changing the lookup

method of an environment.

24



Environments Refined

Here is the new definition of environments.

abstract class Environment {
def lookup (n : String ): Data;
def extendRec (name : String, expr : Environment ⇒ Data ) =

new Environment {
def lookup (n : String ): Data =

if (n == name ) expr (this ) else Environment.this.lookup (n );
}

def extend (name : String, v : Data ) = extendRec (name, (env1 ⇒ v ) );
}

Note that extendRec is now the principal operation for extending an
environment; extend is defined in terms of it.

Note also that lookup enables recursion by passing the current
environment to the function that was found.
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Recursion by Self Application

This technique demonstrates a deep connection in programming: recursion
can be modelled by self-application.

In fact, all recursion is ultimately treated as self-application in lambda
calculus, the theory underlying functional programming.

To demonstrate, without further explanations, here is a version of faculty
that uses neither recursion nor loops!

(lambda (n)

((lambda (fact)

(fact fact n))

(lambda (ft k)

(if (= k 1)

1

(* k (ft ft (- k 1)))))))
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The Global Environment

We evaluate Lisp expressions in an initial (global) environment, which
contains definitions for commonly used operations and constants such as +,
cons, or nil.

Here is a minimally useful version of such an environment.

val globalEnv = EmptyEnvironment
.extend (”=”, Lambda{

case List (arg1, arg2 ) ⇒ if (arg1 == arg2 ) 1 else 0} )
.extend (”+”, Lambda{

case List (arg1 : int, arg2 : int ) ⇒ arg1 + arg2
case List (arg1 : String, arg2 : String ) ⇒ arg1 + arg2} )

.extend (”−”, Lambda{
case List (arg1 : int, arg2 : int ) ⇒ arg1 − arg2} )
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.extend (”∗”, Lambda{
case List (arg1 : int, arg2 : int ) ⇒ arg1 ∗ arg2} )

.extend (”/”, Lambda{
case List (arg1 : int, arg2 : int ) ⇒ arg1 / arg2} )

.extend (”nil”, Nil )

.extend (”cons”, Lambda{
case List (arg1, arg2 ) ⇒ arg1 :: asList (arg2 )} )

.extend (”car”, Lambda{
case List (x :: xs ) ⇒ x} )

.extend (”cdr”, Lambda{
case List (x :: xs ) ⇒ xs} )

.extend (”null?”, Lambda{
case List (Nil ) ⇒ 1
case ⇒ 0} );
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The Top-level Interpreter Function

Here is the main function of the interpreter:

def evaluate (x : Data ): Data = eval (x, globalEnv );

It evaluates a Lisp program in the global environment and returns the
resulting data object.

To add the derived special forms discussed last week such as and, or, or
cond, we would modify this to:

def evaluate (x : Data ): Data = eval (normalize (x ), globalEnv );

To make usage easier for the programmer who types lisp expressions on the
command line, we also include another version of evaluate, which takes
Lisp expressions as strings and returns them as strings.

def evaluate (s : String ): String = lisp2string (evaluate (string2lisp (s ) ) );
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Using Lisp from Scala

Here’s a usage scenario how we could use the Scala interpreter to evaluate
Lisp:

First, define a Lisp function as a string:

> def facultyDef =
”def faculty (lambda (n )” +
” (if (= n 0 )” +
” 1” +
” (∗ n (faculty (− n 1 ) ) ) ) )”

This function could then be applied as follows:

> evaluate (” (” + facultyDef + ” (faculty 4 ) )” )
24
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Extended Exercise

Augment the Lisp interpreter so that it has its own interpreter loop, which
accepts individual definitions and expressions.

Given an input definition, the interpreter would add the defined bindings
to the global environment.

Given an input expression, it would evaluate the expression and print the
result.
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Summary

We have seen how functional programs are evaluated by writing an
interpreter for Lisp.

The central auxiliary data structure was the environment, which represents
all bindings known at the point of computation.

Environments replace substitutions in the formal model of evaluation.
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