
Week 11: Lisp

We now discuss the principles of another functional language: Lisp.

Lisp was the first functional language to be implemented; it dates back to
1959/60.

The name is an acronym for List processor.

At the time, Lisp was designed to deal with data structures for symbolic
computation, such as lists or trees. (The languages that existed at the time
only dealt with arrays).

Lisp has been used to implement many large applications. Examples:

• Macsyma, the first computer algebra program
• AutoCAD, a popular CAD program
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Lisp Variants

In its 40+ years of existence, Lisp has evolved, and many dialects exist
today.

The three most widespread ones are:

• Common Lisp (commercial, big),
• Scheme (academic, clean),
• Elisp (emacs extension language)

We treat here only a subset of Scheme.

The subset we present is purely functional – there are no variables or
assignments. (Real Lisp has these and several other things as well).
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Peculiarities of Lisp

Compared to Scala, there are four main points where Lisp differs and
which make it interesting to study:

• No syntax, programs are simply nested sequences of words.
• No (static) type system.
• Only one form of compound data: the cons cell (from which lists are

built).
• Programs are lists as well, so they can be constructed, transformed

and evaluated by other program.

As an example of a Lisp program, consider faculty:

((define (faculty n)

(if (= n 0)

1

(* n (faculty (- n 1)))))

(faculty 10))
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Observations:

• A compound Lisp expression is a sequence of sub-expressions in
parentheses. Such an expression is also called a combination.

• Every subexpression is either a single word (an atom) or a compound
expression.

• Subexpressions are separated by space characters.
• The first subexpression in a compound expression denotes an operator

(usually a function).
• The other expressions denote the operands.
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Special Forms

Some combinations look like function applications but aren’t. In particular:

(define name expr) defines name as an alias of the result of expr

in the program that follows.

analogous to Scala’s def name = expr.

(lambda (params) expr) the unnamed function that takes parameters

params and returns expr,

analogous to Scala’s (params ⇒ expr ).

(if cond expr1 expr2) returns result of expr1 if cond evaluates to true,

or the result of expr2 otherwise.

Combinations like these are called special forms.

5



Function Applications

A combination (op od1 ... odn) which is not a special form is treated
as a function application.

It is evaluated by applying the result of evaluating the operator op to the
results of evaluating the operands od1, ..., odn.

This is essentially all. It is hard to imagine a useful programming language
with fewer rules.

In fact, Lisp is so simple because it was meant as an intermediate language
for computers, not humans.

It was originally planned to add a fancier Algol-like syntax on top of it,
which would be translated to the intermediate form by a preprocessor.

However, humans got used to Lisp syntax rather quickly (at least some of
them), and started to appreciate its advantages.

So the fancier syntax was never introduced.
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Lisp Data

Data in Lisp are numbers, strings, symbols, and lists.

• Numbers are either floating point or integers. Integers have arbitrary
size (no overflow!).

• Strings are as in Java.
• Symbols are simple sequences of characters without enclosing

apostrophes. Examples:
x head + null? is-empty? set!

Symbols are evaluated by looking up the value of a definition of the
symbol in some environment.

There is no separate type of booleans. Instead, false is represented as the
number 0, whereas any value different from 0 is interpreted as true.
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Lists in Lisp

Lists are written like combinations, e.g.

(1 2 3)

(1.0 "hello" (1 2 3))

Note that lists are heterogeneous; they can have elements of different types.

Note also that we may not evaluate a list like that, since its first element is
not a function.

To prevent lists from being evaluated, we use the special form quote.

(quote (1 2 3))

The argument of quote is returned as the result without being evaluated
itself. quote can be abbreviated with the special character ’.

’(1 2 3)
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Lists Internals

As in Scala, Lisp’s list notation is just syntactic sugar.

Internally, lists are formed from:

• The empty list, written nil.
• Pairs of head x and tail y, written (cons x y).

The list (or combination) (x1 ... xn) is represented as

(cons x1 ( ... (cons xn nil) ... ))

Lists are accessed using the three operations

• (null? x) returns true if the list is empty.
• (car x) returns the head of the list x.
• (cdr x) returns the tail of the list x.
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The names car and cdr point back to the IBM 704, the first computer on
which Lisp was implemented.

On this computer, CAR meant ”contents of address register” and CDR meant
”contents of decrement register”.

These two registers stored the two halves of a cons cell in the IBM 704
implementation.

In comparison to Scala,

cons ~ ::

nil ~ Nil

null? ~ isEmpty

car ~ head

cdr ~ tail
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Lists and Functions

Because Lisp has no static type system, we can represent lists using just
functions, and a single symbol none. Here’s how:

nil = (lambda (k) (k ’none ’none))

(cons x y) = (lambda (k) (k x y))

(car l) = (l (lambda (x y) x))

(cdr l) = (l (lambda (x y) y))

(null? l) = (l (lambda (x y) (= x ’none)))

The idea is that a cons-cell can be represented as a function which takes
another function k as parameter.

The k function is intended to decompose the list.

The cons function simply applies k to its arguments.

Then, car and cdr simply apply the cons function to the appropriate
decomposition functions.
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This construction shows that in principle all data can be constructed from
pure functions.

But in practice, a cons cell is represented by a pair of pointers.
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An example

Here is the definition and usage of map in Lisp:

((define (map f xs)

(if (null? xs)

’()

(cons (f (car xs)) (map f (cdr xs)))))

(map (lambda (x) (* x x)) ’(1 2 3)))

What is the result of evaluating this expression?
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Interpeters

Lisp is so simple that it is an ideal vehicle for studying program evaluation
rules.

In particular, it is fairly easy to write an interpreter for Lisp.

This is what we are going to do now.

More precisely, we will implement Scheme−−, a small but complete subset
of Scheme, using Scala as the implementation language.

Defining new languages is something we did often in this course. Examples
were:

• A language for arithmetic expressions,
• A language for digital circuits,
• A language for constraints.

All these languages were implemented as libraries of Scala functions.
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Two things are new now:

• We will implement a full-blown programming language, which itself
can compute any algorithm (Turing complete).

• The language will have an external syntax which looks like Lisp, not
Scala.

That syntax will be mapped to an internal data structure in Scala by
a parser program.

The implementation will proceed in three stages.

1. Define internal representation of Scheme−− programs.

2. Define a translator from text strings to internal representations.

3. Define an interpreter program that evaluates internal representations.
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Internal Representation of Scheme−−

Our internal representations of Scheme−− closely follow the data
structures used in Scheme. They also re-use as much as possible the
equivalent constructs in Scala.

We define a type Data to represents Scheme data as an alias of scala.Any.

type Data = Any;

• Numbers and strings are represented as in Scala as elements of type
int and String.

• Lists are represented as Scala lists.
• Symbols are represented as instances Scala’s Symbol class (see below).
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Scala Symbols

• Symbols in Scala are values that represent identifiers.
• There is a simplified syntax for such symbol literals: If name is a

lexical identifier, then

’name is a shorthand for Symbol (name ).

The standard class Symbol is defined in package scala as follows.
case class Symbol (name : String ) {

override def toString ( ) = ”’” + name;
}
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Example: The faculty function is written in Scheme−− as:

(define faculty (lambda (n)

(if (= n 0)

1

(* n (faculty (- n 1))))))

Its internal representation is given by:

List (’define, ’faculty, List (’lambda, List (’n ),
List (’if, List (’=, ’n, 0 ),

1,
List (’∗, ’n, List (’faculty, List (’−, ’n, 1 ) ) ) ) ) )
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From Strings to Internal Representations

We now develop a parser program that maps strings into internal
representation.

The mapping proceeds in two stages.

• From a string to a sequence of words (or: tokens)
• From a sequence of words to a Data tree.

Here, a token is one of the following.

• A left or right parenthesis “ (”, “ )”.
• A sequence of characters not containing whitespace or parentheses.
• Tokens which are not parentheses need to be separated by whitespace,

i.e. blanks, new lines, or tabulator characters.
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Tokenizing

We will represent the sequence of words in a Lisp program as an iterator.

The iterator is defined by the following class:

class LispTokenizer (s : String ) extends Iterator [String ] {

private var i = 0;

private def isDelimiter (ch : Char ) = ch ≤ ’ ’ | | ch == ’ (’ | | ch == ’ )’;

def hasNext : boolean = {
while (i < s.length ( ) && s.charAt (i ) ≤ ’ ’ ) { i = i + 1 }
i < s.length ( )

}
...

Notes:

• The iterator keeps a private variable i, denoting the index of the next
character to be read.
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• The hasNext function skips any whitespace in front of the next token
(if one exists). It uses the charAt method in Java’s String class to
access characters in the string.

...
def next : String =

if (hasNext ) {
val start = i;
var ch = s.charAt (i ); i = i + 1;
if (ch == ’ (’ ) ” (”
else if (ch == ’ )’ ) ” )”
else {

while (i < s.length ( ) && !isDelimiter (s.charAt (i ) ) ) { i = i + 1 }
s.substring (start, i )

}
} else error (”premature end of string” )

}
• The next function returns the next token. It uses the substring

method in class String.
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Parsing and Tree Construction

Given the extremely simple syntax of Lisp, it is possible to parse it without
any advanced parsing techniques.

Here is how it is done.

def string2lisp (s : String ): Data = {

val it = new LispTokenizer (s );

def parseExpr (token : String ): Data = {
if (token == ” (” ) parseList
else if (token == ” )” ) error (”unbalanced parentheses” )
else if (Character.isDigit (token.charAt (0 ) ) ) Integer.parseInt (token )
else if (token.charAt (0 ) == ’\”’ && token.charAt (token.length ( )−1 )==’\”’ )

token.substring (1,token.length ( ) − 1 )
else Symbol (token )

}
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def parseList : List [Data ] = {
val token = it.next;
if (token == ” )” ) Nil else parseExpr (token ) :: parseList

}
parseExpr (it.next )

}

Notes:

• The string2list function converts a string into a Data expression tree.
• It first defines a LispTokenizer iterator it.
• This iterator is used by the two functions parseExpr and parseList,

which call each other recursively (recursive descent parser).
• parseExpr parses a single expression.
• parseList parses a list of expressions in parentheses.

23



Now, if we write in the Scala interpreter:

string2lisp (” (lambda (x ) (+ (∗ x x ) 1 ) )” )

we get (without the indentation):

List (’lambda, List (’x ),
List (’+,

List (’∗,’x,’x ),
1 ) )
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Exercise: Write a function lisp2string (x : Data ) which prints Lisp
expressions in Lisp form. I.e.

lisp2string (string2lisp (” (lambda (x ) (+ (∗ x x ) 1 ) )” ) )

should yield

(lambda (x) (+ (* x x) 1))
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Special Forms

Our Lisp interpreter will only be able to implement a single expression.

That expression can have the following special forms:

1.

(val x expr rest)

Evaluates expr, binds the results to x, and then evaluates rest. This is
analogous to Scala’s val x = expr; rest.

2.

(def x expr rest)

Binds x to expr, and then evaluates rest. expr is evaluated each time x is
used. This is analogous to Scala’s def x = expr; rest.
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Real Lisps have instead a range of binders called define for the toplevel
and let, let* and letrec inside combinations.

Lisp’s define and letrec correspond roughly to def and Lisp’s let
corresponds roughtly to val, but their syntax is more complicated.

3.

(lambda (p_1 ... p_n) expr)

Defines an anonymous function with parameters p1, ..., pn and body
expr.

4.

(quote expr)

returns expr without evaluating it.

5.

(if cond then-expr else-expr)

The usual if-then-else construct.
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Removing Syntactic Sugar

Other forms can be mapped to these by transforming the internal
representation of Lisp data.

One can write a function normalize that eliminates other special forms in
trees.

For instance, Lisp supports the special form

(and x y)

(or x y)

for short-circuited and and or. The normalize procedure would map these
to if-then-else expressions as follows.

28



def normalize (expr : Data ): Data = expr match {
case ’and :: x :: y :: Nil ⇒

normalize (’if :: x :: y :: 0 :: Nil )

case ’or :: x :: y :: Nil ⇒
normalize (’if :: x :: 1 :: y :: Nil )

... // further simplifications go here
}

29



Derived Forms

Our normalization function supports the following derived forms.

(and x y) => (if x y 0)

(or x y) => (if x 1 y)

(def (name args_1 ... args_n) => (def name

body (lambda (args_1 ... args_n) body)

expr) expr)

(cond (test_1 expr_1) ... => (if test_1 expr_1

(test_n expr_n) (...

(else expr’)) (if test_n expr_n expr’)...))
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Summary

Lisp is quite an unusual language.

• It does away with elaborate syntax and static type systems.
• It reduces all compound data to lists.
• It identifies programs and data.

These points have advantages as well as disadvantages.

• No syntax:
+ easy to learn, − hard to read.

• No static type system.
+ flexible, − easy to make mistakes.

• Only lists as compound data:
+ flexible, − poor data abstraction.

• Programs are data:
+ powerful, − hard to keep safe.
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