Tuples

Scala a une syntaxe spéciale pour les couples et les tuples en général.

Un couple de valeurs x et y s'écrit (x, y).

Si x est de type T et y de type U, alors (x, y) a le type "tuple" (T, U).

Plus généralement, si x_i : T_i , alors le tuple $(x_1, ..., x_n)$ a le type $(T_1, ..., T_n)$.

Les tuples et les listes agrègent, l'un comme l'autre, les données, mais il y a deux différences importantes.

- Les éléments d'un tuple peuvent être de types différents, alors que les éléments d'une liste sont tous du même type.
- Le nombre d'éléments d'un tuple est fixé par son type, alors que la longueur d'une liste ne l'est pas.

On accède aux éléments d'un n-tuple par les sélecteurs $_1, ..., _n$.

Exemple:

```
> val xy = (2, 3)

val xy : scala.Tuple2 = (2,3)

> xy._1 + xy._2
```

La classe Tuple

Comme tous les autres types, les tuples sont représentés en Scala par des classes.

```
Par exemple le type (T_1, T_2), des tuples à 2 éléments (couples), est représenté par le type classe scala.Tuple2[T_1, T_2].
```

La classe Tuple2 est définie comme suit.

```
package scala with {
    class Tuple2[a, b] (x: a, y: b) with {
        def _1: a = x
        def _2: b = y
        override def toString = "(" + _1 + "," + _2 + ")"
     }
}
```

Explications:

- La clause **package** joue un rôle similaire à celle de Java : elle place Tuple2 dans le paquetage scala.
- La classe Tuple2 est paramétrée par les paramètres de type [a, b] et les paramètres de valeurs (x, y).
- Elle définit les fonctions d'accès _1, _2.
- Elle redéfinit aussi la fonction toString de Object.

Les tuples plus grands peuvent être définis de manière analogue (mais ne font pas partie pour l'instant des classes prédéfinies).

La fonction zip

```
La méthode zip dans List combine deux listes en une liste de couples.

abstract class List[a] with {
```

...

```
def zip[b](that: List[b]): List[(a, b)] = if (this.isEmpty || that.isEmpty) [] else (this.head, that.head) :: (this.tail zip that.tail)
```

Exemple : En utilisant *zip* et *fold*, on peut définir le produit scalaire de deux listes de la manière suivante.

```
def scalarProduct (xs: List [Double], ys: List [Double]): Double = (xs zip ys)

.map (xy \Rightarrow xy._1 * xy_2)

.fold (x: Double, y: Double \Rightarrow x + y) (0)
```

D'avantage sur Fold et Reduce

Exercice : Complétez les définitions suivantes, basées sur l'utilisation de foldRight, qui introduisent des opérations de base pour manipuler les listes.

```
def mapFun [a, b] (xs: List [a], f: (a)b): List [b] = xs.foldRight (y: a, ys: List [b] \Rightarrow ?? )([])

def concatFun [a] (xs: List [a], ys: List [a]): List [a] = ?? .foldRight (cons [a]) (??)

def lengthFun [a] (xs: List [a]): Int = xs.foldRight (??) (0)
```

Ici, cons est prédéfinie dans le fichier List.scala par

```
\operatorname{def} \operatorname{cons}[a](x:a,xs:\operatorname{List}[a]):\operatorname{List}[a]=x::xs
```

Traitements imbriqués sur les listes

On peut étendre les fonctions d'ordre supérieur sur les listes à de nombreux calculs qui sont habituellement exprimés à l'aide de boucles imbriquées.

Exemple: Etant donné un entier positif n, trouver tous les couples d'entiers positifs i et j, avec $1 \le j < i \le n$ tels que i + j est premier.

Par exemple, si n = 6, les couples recherchés sont

Une façon naturelle de faire cela consiste à :

• Générer la suite de tous les couples d'entiers (i, j) tels que $1 \le j < i \le n$.

• Filtrer les couples pour lesquels i + j est premier.

Une manière naturelle de générer la suite des couples est de :

• Générer tous les entiers i compris entre 1 et n. Cela peut être réalisé par la fonction

```
def range (lo: Int, hi: Int): List [Int] = 
if (lo > hi) [] else lo:: range (lo + 1, hi)
```

• Pour chaque entier i, générer la liste des couples (i, 1), ..., (i, i-1). On peut y arriver par une combination de range et map:

```
range (1, i-1) map (x \Rightarrow (i, x))
```

• Finalement, combiner toutes les sous-listes en utilisant foldRight avec

En rassemblant les morceaux on obtient l'expression suivante :

```
 \begin{aligned} & \operatorname{range}\left(1,\, n\right) \\ & \operatorname{.map}\left(i \Rightarrow \operatorname{range}\left(1,\, i-1\right). \operatorname{map}\left(x \Rightarrow \left(i,\, x\right)\right)\right) \\ & \operatorname{.foldRight}\left(xs \colon \operatorname{List}\left[\left(\operatorname{Int},\, \operatorname{Int}\right)\right],\, ys \colon \operatorname{List}\left[\left(\operatorname{Int},\, \operatorname{Int}\right)\right] \Rightarrow xs ::: \, ys\right)\left(\left[\right]\right) \end{aligned}
```

La fonction flatMap

La combinaison consistant à appliquer une fonction aux éléments d'une liste puis à concaténer les résultats est si commune que l'on a introduit une méthode spéciale pour cela dans *List.scala*:

```
abstract class List [a] with {
    ...
    def flatMap [b] (f: (a)List [b]): List [b] = {
        map (f).foldRight (xs: List [b], ys: List [b] \Rightarrow xs ::: ys) ([])
    }
}
```

Avec flatMap, on aurait pu écrire une expression plus concise :

```
range (1, n)
.flatMap (i \Rightarrow range (1, i-1).map (x \Rightarrow (i, x)))
```

 \mathbb{Q} : Trouver une manière concise de définir isPrime? (Indice: utiliser forall définie dans List).

Raisonner sur les listes

Rappelons l'opération de concaténation pour les listes :

```
class List[a] with {
    ...
    def ::: (that: List[a]) =
        if (isEmpty) that
        else head :: (tail ::: that)
}
```

On aimerait vérifier que la concaténation est associative, et qu'elle a la liste vide [] comme élément neutre à gauche et à droite.

```
(xs ::: ys) ::: zs = xs ::: (ys ::: zs)
xs ::: [] = xs = [] ::: xs
```

Q : Comment peut-on prouver des propriétés comme celles-ci?

R: Par induction structurelle sur les listes.

Rappel: Induction naturelle (ou récurrence)

```
Rappelons le principe des preuves par induction naturelle :
Pour montrer une propriété P(n) pour tous les nombres n \geq b,
 1. Montrer qu'on a P(b) (cas de base).
 2. Pour tout n \geq b montrer que :
       si on a P(n), alors on a aussi P(n+1)
    (étape d'induction).
Exemple: Etant donné
    def factorial (n: Int): Int =
       if (n == 0) 1
       else n * factorial(n-1)
montrer que, pour tout n \geq 4,
        factorial(n) \ge 2^n
```

Cas 4 est établi par simple calcul de factorial (4) = 24 et $2^4 = 16$.

```
Cas n+1 On a pour n \ge 4:

factorial(n+1)
= (par la deuxième clause de factorial (*))
(n+1) * factorial(n)
\ge (par calcul)
2 * factorial(n)
\ge (par hypothèse d'induction)
```

 $2 * 2^n$

Remarquez que dans une preuve on peut librement appliquer des étapes de réduction comme (*) à l'intérieur d'un terme.

Ca fonctionne parce que les programmes fonctionnels purs n'ont pas d'effets de bord ; si bien qu'un terme est équivalent au terme en lequel il se réduit.

Ce principe est appelé transparence référentielle.

Induction structurelle

Le principe d'induction structurelle est analogue à l'induction naturelle :

Dans le cas des listes, il a la forme suivante :

Pour prouver une propriété P(xs) pour toutes les listes xs,

- 1. Montrer que P([]) est vrai (cas de base).
- 2. Pour une liste xs et un élément x quelconques, montrer que : si P(xs) est vrai, alors P(x:xs) l'est aussi (étape d'induction).

Exemple

Nous allons montrer que (xs ::: ys) ::: zs = xs ::: (ys ::: zs) par induction structurelle sur xs.

```
Cas [] Pour le côté gauche on a :
```

```
([] ::: ys) ::: zs
= (par la première clause de :::)
ys ::: zs
```

Pour le côté droit on a :

```
[] ::: (ys ::: zs)
= (par la première clause de :::)
ys ::: zs
```

Ce cas est donc établi.

$\mathbf{Cas} \ x :: xs$

Pour le côté gauche on a :

```
((x::xs):::ys):::zs
= (par la seconde clause de :::)
    (x::(xs:::ys)):::zs
= (par la seconde clause de :::)
    x :: ((xs:::ys):::zs)
= (par hypothèse d'induction)
    x :: (xs:::(ys:::zs))
```

Pour le côté droit on a :

```
(x :: xs) ::: (ys ::: zs)
= (par la seconde clause de :::)
x :: (xs ::: (ys ::: zs))
```

Si bien que ce cas-ci (et avec lui la propriété) est établi.

Exercice: Montrer par induction sur xs que xs ::: [] = xs.

Exemple (2)

```
A titre d'exemple plus difficile, considérons la fonction
    abstract class List[a] with {
       def reverse: List[a] =
          if (isEmpty) []
          else tail.reverse ::: [head]
On aimerait prouver la validité de la proposition suivante
        xs.reverse.reverse = xs.
On procède par induction sur xs. Le cas de base est facile à établir :
           [].reverse.reverse
           (par la première clause de reverse)
           ||.reverse
           (par la première clause de reverse)
```

Pour l'étape d'induction on essaie :

```
(x :: xs).reverse.reverse

= (par la seconde clause de reverse)

(xs.reverse ::: [x]).reverse
```

On ne peut rien faire de plus avec cette expression, on se tourne donc vers le membre droit :

```
x :: xs
= (par hypothèse d'induction)
x :: xs.reverse.reverse
```

Les deux côtés se sont simplifiés en des expressions différentes.

On doit donc encore montrer que

```
(xs.reverse ::: [x]).reverse = x :: xs.reverse.reverse
```

Essayer de le prouver directement par induction ne marche pas.

On doit plutôt essayer de *généraliser* l'équation :

```
(ys ::: [x]).reverse = x :: ys.reverse
```

Cette équation peut être prouvée par un second argument d'induction sur ys. (Voir le tableau).

Exercice: Est-il vrai que $(xs \ drop \ m)$ at n = xs at (m + n) pour tous nombres naturels m, n et toute liste xs?

Induction structurelle sur les arbres

L'induction structurelle ne se limite pas aux listes ; elle s'applique à n'importe quelle structure d'arbre.

Le principe général d'induction est le suivant :

Pour montrer la propriété P(t) pour tous les arbres d'un certain type,

- Montrer P(l) pour toutes les feuilles de l'arbre.
- Pour chaque noeud interne t avec sous-arbres $s_1, ..., s_n$, montrer que $P(s_1) \wedge ... \wedge P(s_n) \Rightarrow P(t)$.

Exemple : Rappelons notre définition de *IntSet* avec les opérations contains et incl :

```
abstract class IntSet with {
   abstract def incl(x: Int): IntSet
   abstract def contains(x: Int): Boolean
}
```

```
class Empty extends IntSet with {
   def contains (x: Int): Boolean = False
   def incl(x: Int): IntSet = NonEmpty(x, Empty, Empty)
class NonEmpty(elem: Int, left: Set, right: Set) extends IntSet with {
   def contains (x: Int): Boolean =
     if (x < elem) left contains x
     else if (x > elem) right contains x
      else True
   def incl(x: Int): IntSet =
     if (x < elem) NonEmpty(elem, left incl x, right)
     else if (x > elem) NonEmpty (elem, left, right incl x)
     else this
```

Que signifie prouver la correction de cette implantation?

Les lois de IntSet

Une manière de définir et prouver la correction d'une implantation consiste à prouver des lois qu'elle respecte.

Dans le cas de *IntSet*, les trois lois suivantes en sont un exemple.

Pour tout ensemble s, et éléments x, y:

```
Empty contains x = False

(s incl x) contains x = True

(s incl x) contains y = s contains y si x \neq y
```

(En fait, on peut montrer que ces lois caractérisent complétement le type de donnée désiré).

Comment peut-on prouver ces lois?

Proposition 1: Empty contains x = False.

Preuve : D'après la définition de contains dans Empty.

```
Proposition 2: (xs incl x) contains x = True
```

Preuve:

Cas Empty

- (Empty incl x) contains x
- = (d'après définition de incl dans Empty)
 NonEmpty(x, Empty, Empty) contains x
- = (d'après la définition de contains dans NonEmpty)
 True

Cas NonEmpty(x, l, r)

- (NonEmpty(x, l, r) incl x) contains x
- = (d'après la définition de incl dans NonEmpty)
 - NonEmpty(x, l, r) contains x
- = (d'après la définition de contains dans Empty)
 - True

Cas NonEmpty (y, l, r) avec y < x

- (NonEmpty (y, l, r) incl x) contains x
 (d'après la définition de incl dans NonEmpty)
 NonEmpty (y, l, r incl x) contains x
 (d'après la définition de contains dans NonEmpty)
- (r incl x) contains x
 = (par hypothèse d'induction)

= (par hypothèse d'induction) True

Cas NonEmpty (y, l, r) avec y > x Idem.

Preuve: Voir le tableau.

Exercice

```
Supposons qu'on ajoute une fonction union à IntSet:
    class IntSet with {
       def union (other: IntSet): IntSet
    class Expty extends IntSet with {
       def union (other: IntSet) = other
    class NonEmpty(x: Int, 1: IntSet, r: IntSet) extends IntSet with {
       def union (other: IntSet): IntSet = 1 union r union other incl x
La correction de union peut alors se traduire par la loi suivante :
Proposition 4: (xs union ys) contains x = xs contains x | | ys contains x.
Montrer la proposition 4 en utilisant une induction structurelle sur xs.
```