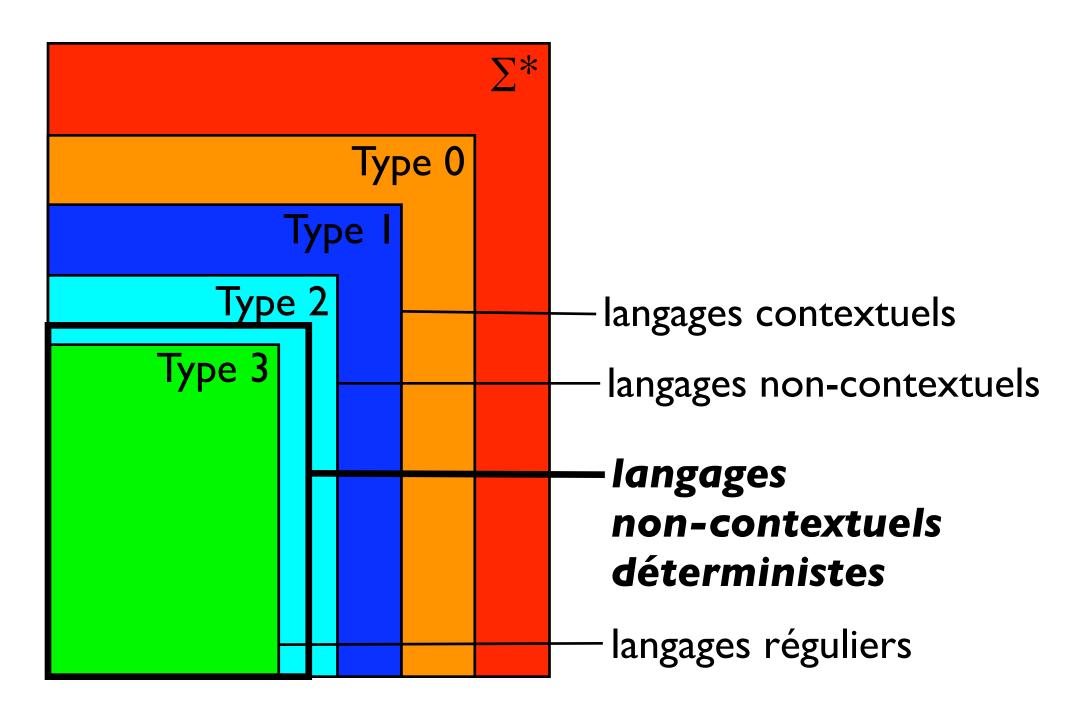
Informatique Théorique 3 2004/05

Semaine 10

Voir [HMU03] §6.4.

Voir [HMU03] §7.3, et [Koz97] §G.

Hiérarchie de Chomsky ...



AAPD

3.7.1 Définition (AAPD)

Un *automate à pile déterministe* (AAPD) est un automate à pile

$$M = (Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F)$$

qui satisfait, pour tout $q \in Q$, $a \in \Sigma$ et $X \in \Gamma$:

$$\#(\Delta(q,a,X)) + \#(\Delta(q,\mathbf{e},X)) \le 1$$

AAPD vs AFD (I)

3.7.2 Définition (Propriété préfixe) Soit L un langage. On dit que L satisfait la propriété préfixe si :

$$\forall x, y \in L . (x \neq y \implies \neg \exists w \in \Sigma^* . (x = yw \lor y = xw))$$

3.7.4 Théorème Soit L un langage. Les deux propositions suivantes sont équivalentes :

- 1. Il existe un AAPD M tel que $L_{pile}(M) = L$.
- 2. Il existe un AAPD M tel que $L_{\text{\'etat}}(M) = L$ et L satisfait la propriété préfixe.

3.7.3 Théorème

- 1. Si L est régulier, alors il existe un AAPD M tel que $L_{\text{\'etat}}(M) = L$.
- 2. Il existe L régulier tel que pour tout AAPD $M: L_{pile}(M) \neq L$.

AAPD vs AFD (II)

3.7.5 Définition (Langage non-contextuel déterministe) Un langage L est dit non-contextuel déterministe s'il existe un AAPD tel que $L_{\text{état}}(M) = L$.

3.7.6 Théorème Soit L un langage.

L régulier $\Rightarrow L$ non-contextuel déterministe $\Rightarrow L$ non-contextuel.

3.7.7 Théorème Soit M un AAPD. Il existe une grammaire non-ambiguë G telle que $\mathcal{L}(G) = \mathcal{L}(M)$.

Substitutions non-contextuelles

3.8.1 **Définition (Substitution)** Soit Σ, Σ' deux alphabets. Une substitution est une application $\sigma: \Sigma \to \mathcal{P}(\Sigma'^*)$ qui associe à toute lettre de Σ un langage sur Σ' .

On étend σ au mots de Σ et au langages sur Σ de la façon suivante :

$$\sigma: \mathcal{P}(\Sigma) \to \mathcal{P}(\Sigma'^*)$$

$$L \mapsto \bigcup_{w \in L} \sigma(w)$$

3.8.2 Théorème Soit Σ, Σ' deux alphabets et L un langage non-contextuel sur Σ . Soit $\sigma : \Sigma \to \mathcal{P}(\Sigma'^*)$ une *substitution*.

Si pour tout $a \in \Sigma$, $\sigma(a)$ est un langage non-contextuel. Alors $\sigma(L)$ est un langage non-contextuel.

- **3.8.3 Théorème (Propriétés de stabilité (1))** Soient A, B deux langages non-contextuels sur Σ . Alors :
 - 1. $A \cup B$ est non-contextuel.
 - 2. AB est non-contextuel.
 - 3. A^* est non-contextuel.

et, si $C \subseteq \Sigma^*$ est un langage régulier :

- 4. $A \cap C$ est non-contextuel.
- 5. $A \setminus C$ est non-contextuel.

En revanche:

- 6. $A \cap B$ n'est pas forcément non-contextuel.
- 7. \overline{A} n'est pas forcément non-contextuel.
- 8. $A \setminus B$ n'est pas forcément non-contextuel.

Soit Σ, Σ' deux alphabets et $h: \Sigma^* \to \Sigma'^*$ un homomorphisme de mots alors :

- 9. Si $A \subset \Sigma^*$ est non-contextuel alors h(A) est non-contextuel.
- 10. Si $B \subset \Sigma'^*$ est non-contextuel alors $h^R(B)$ est non-contextuel.

... et pour les AAPD:

- **3.8.4 Théorème (Propriétés de stabilité (2))** Soient A, B deux langages non-contextuels déterministes sur Σ . Alors :
 - 1. \overline{A} est non-contextuel déterministe.

En revanche:

- 2. A^* n'est pas forcément non-contextuel déterministe.
- 3. $A \cup B$ n'est pas forcément non-contextuel déterministe.
- 4. $A \cap B$ n'est pas forcément non-contextuel déterministe.
- 5. $A \setminus B$ n'est pas forcément non-contextuel déterministe.

Pour la culture ...

3.8.5 **Définition** Soit $Par_n = \{[1, 1, \dots, [n]\}$ un alphabet qui contient n types de parenthèses. Le langage $Equil_n$ sur Par_n est l'ensemble des mots dont les parenthèses sont bien équilibrées. $Equil_n$ est généré par la grammaire suivante :

$$S \to \begin{bmatrix} 1 & 1 & 2 & 2 \\ S \end{bmatrix} \mid \begin{bmatrix} S \end{bmatrix} \mid \cdots \mid \begin{bmatrix} S \end{bmatrix} \mid SS \mid \epsilon$$

3.8.6 Théorème (Chomsky-Schützenberger)

Soit L un langage non-contextuel sur Σ . Il existe un langage R régulier, $n \geq 0$, et un homomorphisme $h : \operatorname{Par}_n \to \Sigma$ tels que :

$$L = h(\operatorname{Equil}_n \cap R)$$

Hiérarchie de Chomsky ...

