Informatique Théorique 3 2004/05

Semaine 2

Répétition... Quiz...

http://fr.wikipedia.org/wiki/Algèbre_abstraite

```
http://fr.wikipedia.org/wiki/Relation_(mathématiques)
```

http://fr.wikipedia.org/wiki/Relation_binaire

http://fr.wikipedia.org/wiki/Relation_d'ordre

. . .

http://fr.wikipedia.org/wiki/Argument_de_la_diagonale_de_Cantor

Spécifier un langage

- par prédicat logique (plus ou moins formel)
 { a | P(a) }
- composition ensembliste de langages existants $L_1 \cup L_2 \dots$
- énumération des mots ...
 difficile pour des langages de taille infinie
- utiliser un mécanisme de **production** des mots

Les Grammaires!

Opérations sur les langages

1.2.2 Définition (Opération sur les langages) Soit Σ un alphabet fini, L et L' deux langages sur Σ^* .

Concaténation. La concaténation LL' de L et L' est définie par $LL' \triangleq \{ww' \mid w \in L \land w' \in L'\}$.

Itération. La n^e itération L^n d'un language n est définie de manière inductive par,

 $L^0 \triangleq \{\epsilon\} \qquad L^{n+1} \triangleq LL^n$

Fermeture itérative. La fermeture itérative (ou de Kleene) L^* de L est définie par

On utilise aussi la notation suivante, $L^+ \triangleq LL^*$

1.2.3 Lemme

1. Propriétés de la fermeture de Kleene.

$$L^*L^* = L^*$$

$$L^{**} = L^*$$

$$\emptyset^* = \{ \epsilon \}$$

Grammaires (I)

1.4.1 Définition (Grammaire générative)

Une grammaire est un quadruplet $G \triangleq (V, \Sigma, P, S)$.

- -V est un alphabet non vide de symboles *non-terminaux*
- Σ est un alphabet non vide de symboles *terminaux* disjoint de V $(V \cap \Sigma = \emptyset)$.
- $-P \subseteq (\Gamma^+ \times \Gamma^*)$ (avec $\Gamma \triangleq V \cup \Sigma$) est un ensemble fini de *productions*.
- $-S \in V$ est le symbole de départ.

Nous utilisons des lettres grecques minuscules α, β, \ldots pour les éléments de $(V \cup \Sigma)^*$. Pour spécifier une production $(\alpha, \beta) \in P$, on note $\alpha \to \beta$ ou encore $\alpha \to_G \beta$.

Grammaires (II)

1.4.2 Définition (Dérivation directe) Soit $G \triangleq (V, \Sigma, P, S)$ une grammaire. La relation de *dérivation directe* dans G entre deux mots $\alpha, \beta \in (V \cup \Sigma)^*$ est définie par,

$$(\alpha \Rightarrow_{G} \beta) \Leftrightarrow \exists \alpha', \beta', \gamma, \gamma' \in (V \cup \Sigma)^{*} : \begin{cases} \alpha' \to_{G} \beta' \\ \alpha = \gamma \alpha' \gamma' \\ \beta = \gamma \beta' \gamma' \end{cases}$$

On dit alors que β est directement dérivable de α dans G.

1.4.3 Définition (Dérivation) Soit $G \triangleq (V, \Sigma, P, S)$ une grammaire. On définit la relation de dérivation \Rightarrow_G^* comme étant la fermeture réflexive et transitive de \Rightarrow_G .

Une *dérivation* de α_0 en α_n dans G est une séquence finie $(\alpha_i)_{i \in [0,n]}$ d'éléments de $(V \cup \Sigma)^*$ telle que $\forall i \in [0,n-1]: \alpha_i \Rightarrow_G \alpha_{i+1}$. On note généralement cette séquence $\alpha_o \Rightarrow_G \alpha_1 \Rightarrow_G \ldots \Rightarrow_G \alpha_n$

Grammaires (III)

- **1.4.4 Définition (Langage d'une grammaire)** Soit $G = (V, \Sigma, P, S)$ une grammaire.
 - 1. Un mot $v \in \Sigma^*$ est généré par G ssi $S \Rightarrow_G^* v$. Dans ce cas on dit que v est un mot *terminal* de la grammaire.
 - 2. Le langage généré par G est défini par :

$$L(G) \triangleq \{ v \in \Sigma^* \mid S \Rightarrow_G^* v \}$$

Alors, on peut énumérer/produire des mots du langage d'une grammaire par application de toutes ses règles de manière systématique et exhaustive.

Types de grammaires (I)

1.4.5 Définition (Type d'une grammaire) Soit $G=(V,\Sigma,P,S)$ une grammaire. Un grammaire est dite de

Type 0 dans tous les cas.

Type 1 si pour toute production $\alpha \to_G \beta \in P$ on a,

- 1. $|\alpha| \leq |\beta|$
- 2. ou $\alpha = S \wedge \beta = \epsilon$.

La grammaire *G* est dite *contextuelle*.

Type 2 si pour toute production $\alpha \to_G \beta \in P$ on a $\alpha \in V$. La grammaire est dite *libre de contexte* ou *non-contextuelle*.

Type 3 si toutes les production $\alpha \to_G \beta \in P$ sont de la forme,

- 1. $A \rightarrow_G wB$
- 2. $A \rightarrow_G w$

avec $A, B \in V$ et $w \in \Sigma^*$. La grammaire est dite *régulière*.

Types de grammaires (II)

1.4.6 Définition L'ensemble des langages générés par les grammaires d'un type i est donné par :

$$\mathcal{L}_i = \{ \mathcal{L}(G) \mid G \text{ est de type } i \}.$$

Un type de grammaire i est inclus dans un type j si $\mathcal{L}_i \subseteq \mathcal{L}_j$.

1.4.7 Définition (Type d'un langage) Un langage L est de type i si $L \in \mathcal{L}_i$ et L est *strictement* de type i si $L \in \mathcal{L}_i \setminus \mathcal{L}_{i+1}$ c'est à dire si L est généré par une grammaire de type i et par aucune grammaire de type i+1.

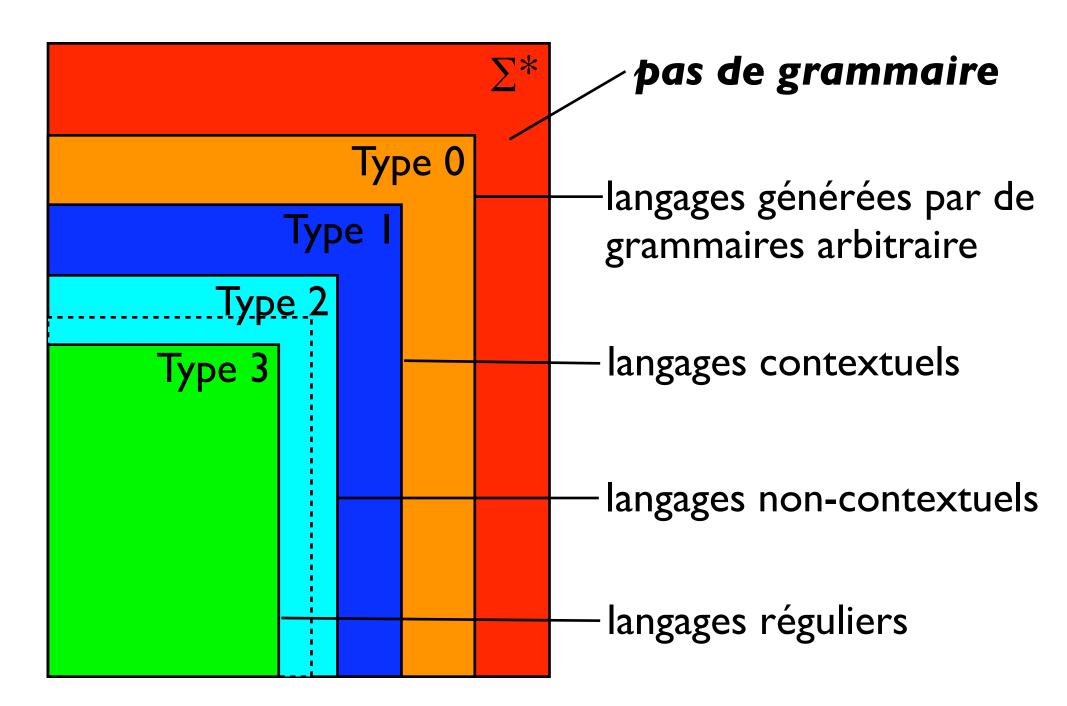
1.4.8 Théorème (Hiérarchie de Chomsky)

La relation entre les types de langages est :

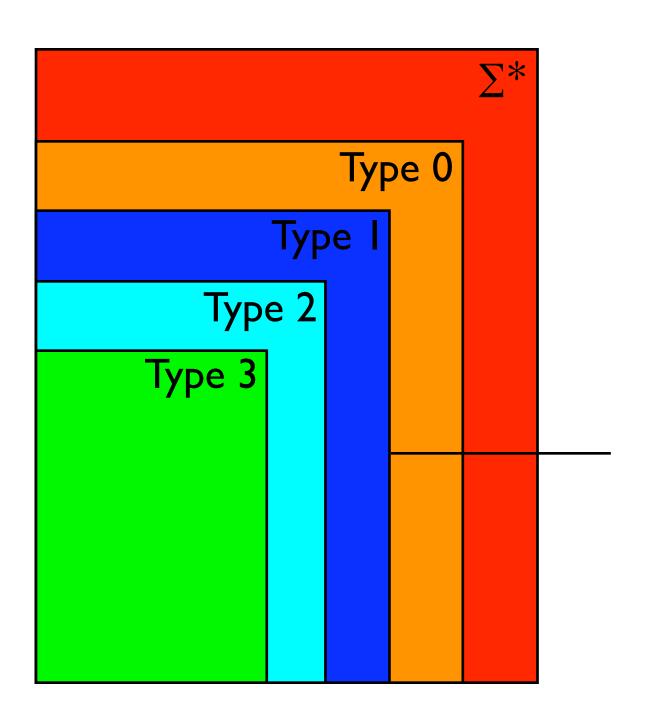
$$\mathcal{L}_3 \subset \mathcal{L}_2 \subset \mathcal{L}_1 \subset \mathcal{L}_0$$

Les inclusions sont strictes.

Hiérarchie de Chomsky (I)



Hiérarchie de Chomsky (III)



Décider les « problèmes de type I »

```
T_n^m « mots de long. \leqn dérivable en moins de m étapes »
         = \{S\}
INPUT(G, x);
                 Type 1 si pour toute production \alpha \to_G \beta \in P on a,
n := |x|;
                          1. |\alpha| \leq |\beta|
T := S;
                          2. ou \alpha = S \wedge \beta = \epsilon.
REPEAT
    T' := T;
    T := \mathsf{Drv}_n(T');
UNTIL (x \in T) OR (T = T');
IF x \in T
    THEN WriteString (" x element of L(G) ")
    ELSE WriteString (" x not element of L(G) ")
END
```

Automates finis déterministes (AFD)

2.1.1 Définition Un automate fini déterministe (AFD) est un quintuplet

$$M = (Q, \Sigma, \delta, s, F)$$

où

- Q est un ensemble fini d'états,
- $-\Sigma$ est un ensemble fini de symboles, l'alphabet (d'entrée),
- $-\delta: Q \times \Sigma \to Q$ est la fonction (totale) de transition,
- $-s \in Q$ est l'état initial (ou de départ),
- $-F \subseteq Q$ est un sous-ensemble de Q, les états accepteurs (ou finaux).

Fonctionnement des AFDs

2.1.3 Définition (Fonction de transition sur les mots) Étant donné un AFD $(Q, \Sigma, \delta, s, F)$, on étend la fonction de transition δ en une fonction de transition $\widehat{\delta}: Q \times \Sigma^* \to Q$ sur les mots définie par :

- **2.1.4 Définition (Langage accepté par un automate)** Soit $M=(Q,\Sigma,\delta,s,F)$ un AFD.
 - 1. M accepte le mot $w \in \Sigma^*$ ssi $\widehat{\delta}(s, w) \in F$. Dans le cas contraire on dit que M rejette w.
 - 2. Le *langage accepté par M* est défini par :

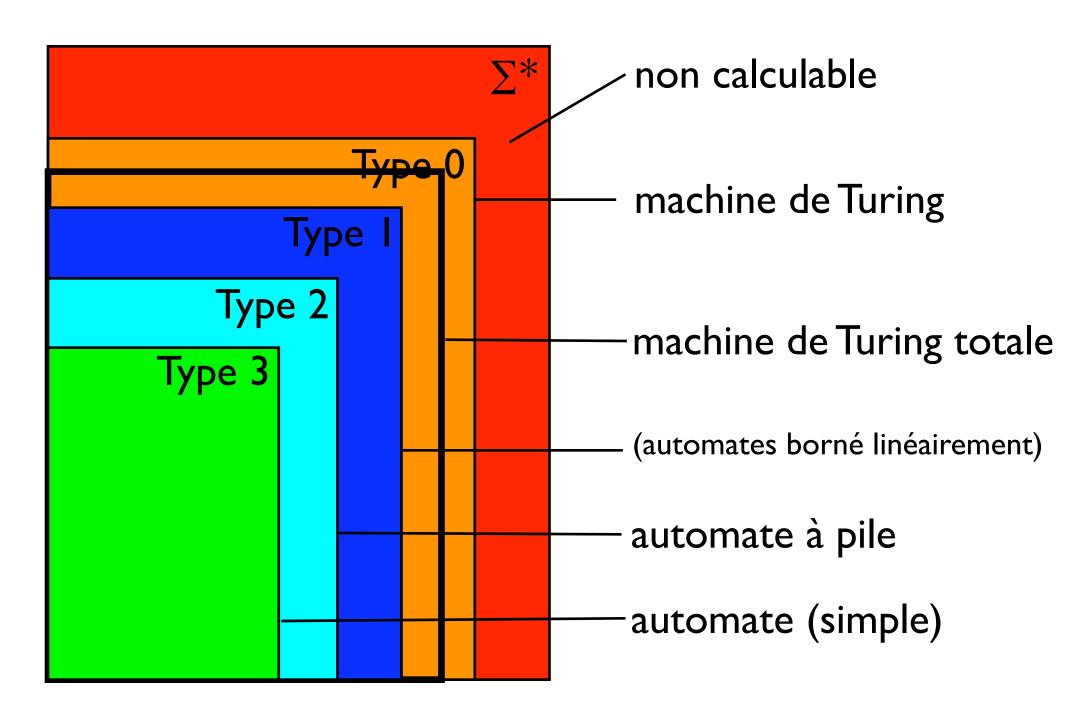
$$L(M) \triangleq \{ w \in \Sigma^* \mid \widehat{\delta}(s, w) \in F \}$$

Langages réguliers

2.1.5 Définition (Langage régulier) Un langage $L \subseteq \Sigma^*$ est dit *régulier* s'il existe un automate fini M tel que L(M) = L.

- **2.1.6 Théorème** Soit L un langage sur Σ . Les deux propositions suivantes sont équivalentes :
 - 1. Il existe un AFD $M = (Q, \Sigma, \delta, s, F)$ avec L(M) = L.
 - 2. Il existe une grammaire régulière $G = (V, \Sigma, P, S)$ avec L(G) = L.

Hiérarchie de Chomsky (III)



Problèmes de décision (I)

1.5.2 Définition (Problèmes de décision) Un problème de décision (binaire) est un ensemble $P = P^{\oplus} \cup P^{\ominus}$ constitué de deux parties disjointes $(P^{\oplus} \cap P^{\ominus} = \emptyset)$, les instances positives P^{\oplus} et négatives P^{\ominus} du problème.

En informatique théorique, on conjecture que tout problème peut être représenté par (encodé dans) un langage sur un alphabet donné.

- 1.5.3 Thèse Pour tout problème P, il existe un *encodage* de P.
- **1.5.4** Définition (Problème de décision encodés) Un problème binaire P est dit encodé sur un alphabet Σ si $P \subseteq \Sigma^*$ (souvent $P = \Sigma^*$).

Noter que dans ce cas, par $P=P^{\oplus}\cup P^{\ominus}$, les ensembles P^{\oplus} et P^{\ominus} des instances positives et négatives sont représentés par des *langages* sur Σ .

Fonctions (semi-) caractéristiques

- **1.5.1 Définition (Fonctions caractéristiques)** Soit A et B deux ensembles tels que $A \subseteq B$
 - 1. La fonction caractéristique χ_A^B de A par rapport à B est définie par :

$$\chi_A^B: B \longrightarrow \{0,1\}$$

$$b \mapsto \begin{cases} 1 & \text{si } b \in A \\ 0 & \text{si } b \notin A \end{cases}$$

2. La fonction semi-caractéristique χ'^B_A de A par rapport à B est définie par :

$$\chi'_{A}^{B}: B \longrightarrow \{0,1\}$$

$$b \mapsto 1 \text{ si } b \in A$$

Lorsque l'ensemble B dont on parle est évident (dans le contexte), on ne le mentionne pas explicitement et on écrit simplement χ_A . Noter que, par définition, une fonction caractéristique est totale.

Problèmes de décision (II)

1.5.5 Définition (Décidabilité) Soit $P = P^{\oplus} \cup P^{\ominus}$ un problème encodé sur Σ . Soit $L \triangleq P^{\oplus}$. P est décidable si la fonction caractéristique χ_L^P de L par rapport à P est calculable. P est semi-décidable si la fonction semicaractéristique ${\chi'}_L^P$ de L par rapport à P est calculable.

$$\chi'_L: \begin{array}{ccc} P & \rightharpoonup & \{\,0,1\,\} \\ & w & \mapsto & 1 & \text{si } w \in L \end{array}$$

Calculabilité

A la place de regarder toutes les fonctions de l'univers,

nous limitons notre recherche à des fonctions caractéristiques pour des problèmes binaire

bref,

à la question de calculabilité de la reconnaissance des langages sur des alphabets finis.

Déjà là, les limites fondamentales apparaissent.

Hiérarchie de Chomsky (II)

