Les explications des réponses sont marquées avec .

1. Vrai ou Faux?

Les affirmations suivantes sont-elles vraies ou fausses?

Vrai Faux

Soit Σ un alphabet et L un langage sur Σ . Si on arrive à montrer que $\mathbf{G}(L)$

est vrai, alors on a prouvé que L est un langage régulier.

 \clubsuit L régulier \Rightarrow $\mathbf{G}(L)$, mais pas $\mathbf{G}(L) \Rightarrow L$ régulier.

$$\boxtimes$$
 $\neg (A \Rightarrow B) \Leftrightarrow \neg (\neg A \lor B) \Leftrightarrow A \land (\neg B).$

oxdots Soit $\mathbf{G}(L)$ défini comme au premier point ci-dessus. Sa négation est :

$$\neg \mathbf{G}(L) \Leftrightarrow \forall n \in \mathbb{N} . \exists w \in L . |w| \geq n \land \neg \begin{pmatrix} \exists x, y, z \in \Sigma^* . & w = xyz \\ & \land y \neq \epsilon \\ & \land |xy| \leq n \\ & \land \forall k \in \mathbb{N} . xy^k z \in L \end{pmatrix}$$

La partie $\exists n \in \mathbb{N} . \forall w \in L .$ dans $\mathbf{G}(L)$ est générale et doit donc être niée. L'implication vue au point précédent peut être réécrite comme : $\neg(\forall n \in \mathbb{N} . \exists w \in L . A \Rightarrow B) \Leftrightarrow \exists n \in \mathbb{N} . \neg(\exists w \in L . (A \Rightarrow B))$

$$\Leftrightarrow \exists n \in \mathbb{N} . \forall w \in L . \neg (A \Rightarrow B)) \Leftrightarrow \exists n \in \mathbb{N} . \forall w \in L . (A \land (\neg B)))$$

 \square Soit Σ un alphabet et $A, B \subseteq \Sigma^*$ des langages. Si B n'est pas régulier et $B \subset A$ alors A n'est pas régulier.

Les propriétés de stabilité ne nous disent rien par rapport à l'inclusion des langages. Par exemple, $L \triangleq \{0^n1^n \mid n \in \mathbb{N}\}$ n'est pas régulier, $\{0^n1^n \mid n \in \mathbb{N}\} \subset 0^*1^*$, mais 0^*1^* est régulier.

2. Correcte ou Pas?

Soit donné le problème :

Une chaîne w dont les parenthèses sont *équilibrées*, noté w équilibré, satisfait la propriété suivante.

$$w$$
 équilibré $\Leftrightarrow |w|_{(} = |w|_{)}$ et $\forall w'$ si $w' \ll_p w$ alors $|w'|_{(} \geq |w'|_{)}$

Montrez que le langage $\{w \in \{(,),a\}^* \mid w \text{ équilibré}\}$ n'est pas régulier.

Les preuves suivantes sont-elles correctes... ou pas?

N.B.: C'est possible que plusieurs preuves soient correctes.

Correcte ou Pas

- - \clubsuit On n'a pas le droit de choisir n. Il doit être quelconque.
- Prenons n quelconque et construisons la chaîne $w=(^n)^n\in L$. Prenons une décomposition w=xyz quelconque telle que $y\neq \epsilon$ et $|xy|\leq n$. Étant donné que $w=xyz=(^n)^n$, $|xy|\leq n$ et que $y\neq \epsilon$, nous savons que $xy=(^i$ avec $|y|_{\cite{0.5ex}}\geq 1$. Prenons k=0 et formons $xy^0z=xz$, nous montrons que xz n'est pas dans L. Étant donné que $|xy|_{\cite{0.5ex}}=|(^i|_{\cite{0.5ex}})=0$, nous avons $|xz|_{\cite{0.5ex}}=|xyz|_{\cite{0.5ex}}=|xyz|_{\cite{0.5ex}}=n$. Par ailleurs, $|xz|_{\cite{0.5ex}}=|xyz|_{\cite{0.5ex}}=|xyz|_{\cite{0.5ex}}=|xyz|_{\cite{0.5ex}}=|xyz|_{\cite{0.5ex}}=|xyz|_{\cite{0.5ex}}=1$, cela signifie que $|xz|_{\cite{0.5ex}}=n-|y|_{\cite{0.5ex}}=|xz|_{\cite{0.5ex}}$, d'où l'on tire que $xz\not\in L$.
- Prenons n quelconque et construisons la chaîne $w=(^n)^n\in L$. Prenons une décomposition w=xyz telle que $x=(^{n-2}$ et $y=(^2$, qui respecte donc les conditions $y\neq \epsilon$ et $|xy|\leq n$. Prenons k=0 et formons $xy^0z=xz$, nous montrons que xz n'est pas dans L. Étant donné que $|xy|_1=|(^n|_1)=0$, nous avons $|xz|_1=|xyz|_1=|xyz|_1=n$. Par ailleurs, $|xz|_1=|xyz|_1=|xyz|_1=n$ el a signifie que $|xz|_1=n$ el $|xz|_1=n$ d'où l'on tire que $|xz|_1=n$ el $|xz|_1=n$ el |xz
 - On n'a pas le droit de choisir la décomposition w = xyz. Elle doit être quelconque.