1. Grammaires quelconques

Pour chacun des langages suivants, donner une grammaire le générant. Indiquer le type des grammaires trouvées.

- 1. $L_0 = \{airbag, mandragore\}, langage sur l'alphabet <math>\Sigma_0 = \{a,b,...,z\}.$
- 2. $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$, langage sur l'alphabet $\Sigma_1 = \{a, b\}$.
- 3. $L_2 = \{a^n b^n c^n \mid n \in \mathbb{N}\}$, langage sur l'alphabet $\Sigma_2 = \{a, b, c\}$.
- 4. $L_3 = \{a^{(2^n)} \mid n \in \mathbb{N}\}$, langage sur l'alphabet $\Sigma_3 = \{a\}$.

2. Associativité et grammaires non-contextuelles

On considère comme alphabet $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -\}$. Soit $G = (\{S, N\}, \Sigma, P, S)$ avec P tel que :

$$S \rightarrow N-S \ \big| \ N$$

$$N \rightarrow 0 \ \big| \ 1 \ \big| \ 2 \ \big| \ 3 \ \big| \ 4 \ \big| \ 5 \ \big| \ 6 \ \big| \ 7 \ \big| \ 8 \ \big| \ 9$$

On interprète les symboles $0,\ldots,9$ par les entiers correspondants. Étant donné un arbre d'analyse (t,ψ) de G, on définit l'interprétation $I(t,\psi)$ de l'arbre, qui calcule la valeur de l'expression arithmétique que celui-ci représente, par :

$$I((n), \psi) \triangleq \psi(n)$$

$$I((n t), \psi) \triangleq I(t, \psi)$$

$$I((n t_1 t_2 t_3), \psi) \triangleq I(t_1, \psi) - I(t_3, \psi)$$

- 1. Donner l'arbre (les arbres?) de dérivation (t,ψ) de la chaîne 1-2-3 dans G. Que vaut $I(t,\psi)$?
- 2. Comme vous avez du le remarquer, l'expression précédente ne s'évalue pas en ce que l'on souhaiterait à savoir -4. Donner alors une grammaire G' tel que l'opérateur soit associatif à gauche et non à droite comme G le fait.
- 3. Donner l'arbre de dérivation (t', ψ') de la chaîne 1-2-3 dans G' et vérifier que $I(t', \psi') = -4$.

3. De l'ambiguïté

Soit $\Sigma=\{0,\dots,9,+,*\}$ un alphabet terminal et $G=(\{E,N\}\,,\Sigma,P,E)$ avec P tel que :

- 1. Démontrer l'ambiguïté de G en exhibant deux arbres d'analyse pour le mot 1+2*3. Le mot 45*2 appartient-il à $\mathrm{L}(G)$?
- 2. Dans ce qui suit, on confond les lettres $0, \dots, 9$ avec les chiffres qui leur correspondent et les lettres * et + avec les opérations idoines sur les nombres naturels.

Série 7

Étant donné un arbre d'analyse (t,ψ) de G, on définit l'interprétation $I(t,\psi)$ de l'arbre, qui calcule la valeur de l'expression arithmétique que celui-ci représente, par :

$$I((n t_1 t_2 t_3), \psi) = I(t_1, \psi) \text{ op } I(t_3, \psi)$$
 avec $\text{op} = \psi \text{ (racine}(t_2))$
 $I((n t), \psi) = I(t, \psi)$
 $I((n), \psi) = \psi(n)$

N.B. la fonction ci-dessus est bien définie sur les arbres d'analyse de G car leurs nœuds n'ont que un ou trois sous-arbres directs (pourquoi?).

Calculer l'interprétation des deux arbres d'analyse du point précédent.

- 3. Changer la grammaire G en une grammaire $G' = (V, \Sigma, P', E)$ pour la rendre non-ambiguë et telle que l'ordre de priorité des opérateurs soit, du plus faible au plus fort, +, * (c.-à.d, l'interprétation de 1+2*3 devrait être 7).
- 4. Donner l'unique arbre d'analyse de 1+2*3 dans *G'*. En définissant une fonction d'interprétation adéquate sur les arbres d'analyse de *G'* comme ci descus. L'unique interprétation de 1+2*3 deverait être 7. Conn.

de G' comme ci-dessus, l'unique interprétation de 1+2*3 devrait être 7. Cependant, parfois, on aimerait pouvoir écrire des mots tels que (1+2)*3, à interpréter par 9, les parenthèses servant à changer l'ordre de priorité des opérateurs.

Donner une grammaire $G''=(V',\Sigma\cup\{\},(\},P'',E)$ qui garde l'ordre de priorité des opérateurs de la grammaire G' mais qui permet aussi d'introduire des parenthèses pour changer l'ordre de priorité des opérateurs.

5. Soit la grammaire $G^{\prime\prime\prime}=\left(\left\{ E,N\right\} ,\Sigma,P^{\prime\prime\prime},E\right)$ avec $P^{\prime\prime\prime}$ tel que :

Cette grammaire génère le même genre d'expression que G mais en notation préfixe. Donner les arbres de dérivation de +1*23 et *+123 et démontrer que cette grammaire n'est pas ambiguë.

Pour cela utiliser le lemme suivant :

Lemme 3.1 Soit G une grammaire non-contextuelle et $u\beta \Rightarrow^* w$ une dérivation dans G avec $u, w \in \Sigma^*$. Alors il existe $w' \in \Sigma^*$ tel que $w = u \cdot w'$.

4. De l'ambiguïté (bis)

Donner une grammaire G' ambiguë qui génère le même langage que la grammaire $G = (\{S, S'\}, \{\}, \{\}, P, S)$ avec P tel que :

$$S \to S'S \mid \epsilon$$

 $S' \to (S)$

Démontrer l'ambiguïté de G'.