1. Réduction

Déterminer pour chacun des langages suivants, s'il est décidable, semi-décidable mais non décidable, ou non-semi-décidable.

- 1. $L_1 = \{[M] \mid M \text{ ne s'arrête pour aucun mot}\}$
- 2. $L_2 = \{[M] \mid M \in MT \text{ est totale}\}$
- 3. $L_3 = \{[M] \mid M \text{ ne s'arrête pas pour au moins un mot}\}$

On pourra utiliser le résultat suivant :

$$L'_H = \{[(M, w)] \mid M \text{ ne s'arrête pas pour } w\} \text{ est non-semi-décidable.}$$

Solution.

1. On montre que L_1 n'est pas semi-décidable en montrant que $L'_H \leq_{\text{red}} L_1$. On définit $\sigma: \{0,1\}^* \to \{0,1\}^*$ de la façon suivante :

$$\sigma: \left\{0,1\right\}^* \to \left\{0,1\right\}^*$$

$$x \mapsto \begin{cases} \left[\mathcal{M}_M^w\right] & \text{s'il existe une MT } M \text{ et un mot } w \text{ tel que } x = [(M,w)] \\ \left[M^{\text{triv}}\right] & \text{sinon} \end{cases}$$

où \mathcal{M}_M^w est la machine qui, étant donné un mot y en entrée, l'efface, écrit w à la place et se comporte comme M ensuite.

Il est clair que σ est Turing-calculable. Il reste à montrer que σ vérifie

$$\forall x \in \{0,1\}^* \ . \ x \in L'_H \Leftrightarrow \sigma(x) \in L_1$$

Soit $x \in \{0, 1\}^*$

- (⇒) Supposons $x \in L'_H$. On sait alors qu'il existe M et w tel que x = [(M, w)] et M ne s'arrête pas pour w. On a donc $\sigma(x) = [\mathcal{M}_M^w]$. Par construction, puisque M ne s'arrête pas pour w, \mathcal{M}_M^w ne s'arrête pour aucun mot et donc $\sigma(x) \in L_1$.
- (\Leftarrow) Supposons maintenant que $\sigma(x) \in L_1$. Comme M^{triv} s'arrête pour tous les mots et donc que $M^{\mathrm{triv}} \not\in L_1$ nécessairement il existe M et w tel que x = [(M,w)] et alors $\sigma(x) = [\mathcal{M}_M^w]$. Comme $\sigma(x) \in L_1$, on a donc que \mathcal{M}_M^w ne s'arrête pour aucun mot. Par construction de \mathcal{M}_M^w , cela signifie donc que M ne s'arrête pas pour w et donc $x \in L_H'$.

On a donc $L'_H \leq_{\text{red}} L_1$. L'_H n'étant pas semi-décidable, on en conclut que L_1 n'est pas semi-décidable.

2. On montre que L_2 n'est pas semi-décidable en montrant que $L'_H \leq_{\mathrm{red}} L_2$. Soit σ la fonction telle que $\sigma([(M,w)]) = [\mathcal{M}_M^w]$ où \mathcal{M}_M^w est la machine qui, étant donné un mot x en entrée, simule |x| transitions de la machine M sur le mot w. Si pendant cette simulation, M s'arrête pour w alors \mathcal{M}_M^w rentre dans un état où elle boucle ad vitam eternam et sinon \mathcal{M}_M^w s'arrête. Autrement dit, la longueur du mot d'entrée x donne le nombre de pas maximum qu'on va dérouler pour exécuter M sur w.

Alors, il est clair que \mathcal{M}_M^w est totale si et seulement si M ne s'arrête pas pour w. En effet, si M s'arrête pour w, elle le fait en un certain nombre d'étapes n. Alors pour tous les mots de longueur supérieure à n, \mathcal{M}_M^w ne s'arrête pas et \mathcal{M}_M^w n'est pas totale. Réciproquement, si \mathcal{M}_M^w n'est pas totale, il existe un mot x pour lequel \mathcal{M}_M^w ne s'arrête pas. Par construction, cela signifie que M s'arrête pour w en moins de |x| transitions.

Série 13 solution 2

On a donc $L'_H \leq_{\text{red}} L_2$. L'_H n'étant pas semi-décidable, on en conclut que L_2 n'est pas semi-décidable.

3. Tout d'abord notons que $L_3=\overline{L_2}$. Ayant démontré ci-dessus que L_2 est non-semi-décidable, L_3 ne peut pas être décidable.

On montre que L_3 n'est pas semi-décidable en montrant que $L'_H \leq_{\mathrm{red}} L_3$. Soit σ la fonction telle que $\sigma([(M,w)]) = [\mathcal{M}_M^w]$ où \mathcal{M}_M^w est la machine qui, étant donné un mot x en entrée, l'ignore, simule M sur w et s'arrête si M s'arrête sur w.

Par construction il est clair que \mathcal{M}_M^w ne s'arrête pas sur toutes les entrées — et donc pour au moins un mot — si M ne s'arrête pas sur w. Réciproquement si M s'arrête sur w alors \mathcal{M}_M^w s'arrête toujours.

On a donc $L'_H \leq_{\text{red}} L_3$ et L'_H n'étant pas semi-décidable, on en conclut que L_2 n'est pas semi-décidable.

2. Rice

Utiliser le théorème de Rice pour montrer que les problèmes suivants sont indécidables.

1. Étant donnée une machine de Turing M, est-ce que $L(M) = \emptyset$?

2. Étant donnée une machine de Turing M, est-ce que L(M) est fini?

3. Étant donnée une machine de Turing M, est-ce que $\mathrm{L}(M)$ est un langage régulier?

4. Étant donnée une machine de Turing M, est-ce que $\mathrm{L}(M)$ est un langage algébrique?

Solution. On reformule ces problèmes en terme de propriétés sur \mathcal{L}_0 , \mathcal{L}_0 étant par définition l'ensemble des langages reconnus par les MT.

1. Ce problème est équivalent à décider la propriété *P* définie par :

$$P: \mathcal{L}_0 \to \{0, 1\}$$

$$L \mapsto \begin{cases} 1 & \text{si } L = \emptyset \\ 0 & \text{sinon} \end{cases}$$

Cette propriété est non-triviale car $P(\emptyset)=1$ et $P(\{0\})=0$. D'après le théorème de Rice, elle est donc indécidable.

2. Ce problème est équivalent à décider la propriété P définie par :

$$P: \mathcal{L}_0 o \{0,1\}$$

$$L \mapsto \begin{cases} 1 & ext{si } L ext{ est fini} \\ 0 & ext{sinon} \end{cases}$$

Cette propriété est non-triviale car $P(\emptyset) = 1$ et $P(\{0\}^*) = 0$. D'après le théorème de Rice, elle est donc indécidable.

Série 13 solution 3

3. Ce problème est équivalent à décider la propriété P définie par :

$$P: \mathcal{L}_0 \to \{0, 1\}$$

$$L \mapsto \begin{cases} 1 & \text{si } L \text{ est régulier} \\ 0 & \text{sinon} \end{cases}$$

Cette propriété est non-triviale car $P(\emptyset) = 1$ et $P(\{0^n1^n \mid n \in \mathbb{N}\}) = 0$. D'après le théorème de Rice, elle est donc indécidable.

4. Ce problème est équivalent à décider la propriété P définie par :

$$P: \mathcal{L}_0 \to \{0,1\}$$

$$L \mapsto \begin{cases} 1 & \text{si } L \text{ est alg\'ebrique} \\ 0 & \text{sinon} \end{cases}$$

Cette propriété est non-triviale car $P(\emptyset) = 1$ et $P(\{0^n1^n0^n \mid n \in \mathbb{N}\}) = 0$. D'après le théorème de Rice, elle est donc indécidable.

3. Indécidabilité¹

Étant donné un alphabet Σ , considérons l'ensemble Υ constitué des langages semidécidables qui contiennent *au moins* tous les palindromes de Σ^* . En d'autre termes,

$$\Upsilon \triangleq \{L \subseteq \mathcal{L}_0 \mid \operatorname{Pal}(\Sigma^*) \subseteq L\}$$

Démontrez que le problème qui consiste à déterminer si un langage $L \in \mathcal{L}_0$ appartient à Υ n'est pas décidable. Utilisez d'abord le théorème de Rice. Puis redémontrez le résultat par réduction en reformulant le problème comme une propriété à décider sur les machines de Turing.

Preuve. Par le théorème de Rice.

L'ensemble \(\gamma\) peut être représenté par sa fonction caractérisique :

$$\Upsilon:\, \mathcal{L}_0 o \{0,1\}$$
 $L \mapsto egin{cases} 1 & ext{si } \operatorname{Pal}(\Sigma^*) \subseteq L \ 0 & ext{sinon} \end{cases}$

Considérons les langages \emptyset et Σ^* , ce sont des langages réguliers, ils appartiennent donc à \mathcal{L}_0 . Or nous avons $\Upsilon(\emptyset)=0$ et $\Upsilon(\Sigma^*)=1$. La propriété Υ n'est donc pas triviale. Par le théorème de Rice nous déduisons que Υ n'est pas décidable et donc que l'appartenance à Υ ne l'est pas non plus.

Preuve. Par réduction.

Les langages semi-décidables sont les langages acceptés par les machines de Turing. Le problème de l'appartenance à Υ peut donc être reformulé comme suit : est-il possible de déterminer si une une machine de Turing M accepte au moins l'ensemble des palindromes de Σ^* ? En d'autre termes, le langage suivant est-il décidable :

$$L_{\operatorname{Pal}} = \{ [M] \mid \operatorname{Pal}(\Sigma^*) \subseteq \operatorname{L}(M) \}$$

¹Inspiré d'un problème d'examen 2003/2004.

Série 13 solution 4

On montre L_{Pal} non-décidable par réduction du problème de l'arrêt, $L_{\operatorname{H}} \leq_{\operatorname{red}} L_{\operatorname{Pal}}$. Soit σ la fonction telle que $\sigma([(M,w]) = [\mathcal{M}_M^w]$ où \mathcal{M}_M^w est la machine qui, étant donné un mot x en entrée,

Teste si l'entrée x est un palindrome de Σ^* et

- 1. si oui, simule M sur w et accepte si M s'arrête pour w.
- 2. sinon, rejette l'entrée.

par construction de \mathcal{M}_M^w nous avons :

$$\mathrm{L}(\mathcal{M}_M^w) = \begin{cases} \mathrm{Pal}(\Sigma^*) & \text{si } M \text{ s'arrête pour } w \\ \emptyset & \text{sinon.} \end{cases}$$

On a donc $\operatorname{Pal}(\Sigma^*) \subseteq \operatorname{L}(\mathcal{M}_M^w)$ si M s'arrête pour w. Réciproquement, si M ne s'arrête pas pour w, $\operatorname{L}(\mathcal{M}_M^w) = \emptyset$.

On a donc $L_{\rm H} \leq_{\rm red} L_{\rm Pal}$ et $L_{\rm H}$ étant non décidable, on en conclut que L_3 est non décidable.