1. Diagonalisation prolifique

Montrer que les langages suivants ne sont pas semi-décidables.

1.
$$L_1 = \{ w \in \{0, 1\}^* \mid w \notin L(M_{w \cdot 0}) \}$$

2. $L_2 = \{ w \in \{0, 1\}^* \mid w \cdot 0 \notin L(M_w) \}$

Preuve.

- 1. Raisonnons par l'absurde et supposons que L_1 soit semi-décidable. Il existe alors une machine de Turing M tel que $\mathrm{L}(M) = L_1$. On sait, d'après l'encodage des MT en binaire, qu'il existe alors $w \in \{0,1\}^*$ tel que $M = M_w$. D'après la définition de l'encodage, on sait même que w se termine par un 0; il existe $w' \in \{0,1\}^*$ tel que $w = w' \cdot 0$. On se demande alors si $w' \in L_1$ ou si $w' \notin L_1$.
 - (a) Supposons $w' \in L_1$. Par définition de L_1 , cela signifie que $w' \notin L(M_{w'0})$. C'est-à-dire, puisque w = w'0 et $M_w = M$ que $w' \notin L(M) = L_1$. On arrive à une contradiction.
 - (b) Supposons $w' \notin L_1$. Par définition de L_1 , on a alors $w' \in L(M_{w'0})$. Comme w = w'0 et $M = M_w$, on a donc $w' \in L(M) = L_1$. On arrive encore à une contradiction.

L'hypothèse de départ nous amène à une contradiction. On en déduit que L_1 n'est pas semi-décidable.

- 2. Raisonnons par l'absurde et supposons que L_2 soit semi-décidable. Il existe une machine de Turing M tel que $\mathrm{L}(M)=L_2$. Partant de M, il est facile de construire une machine de Turing M' tel que $\mathrm{L}(M')=L_2\cdot 0$. Par définition, $L_2\cdot 0=\left\{w\cdot 0\in\{0,1\}^*\cdot 0\mid w\cdot 0\not\in\mathrm{L}(M_w)\right\}$. D'après le codage des machines de Turing en binaire, il existe $w\in\{0,1\}^*$ tel que $M'=M_w$. On se demande alors si $w\cdot 0\in L_2\cdot 0$ ou si $w\cdot 0\not\in L_2\cdot 0$.
 - (a) Supposons $w \cdot 0 \in L_2 \cdot 0$. Par définition, on a $w \cdot 0 \notin L(M_w)$. Comme $M_w = M'$, on a donc $w \cdot 0 \notin L(M') = L_2 \cdot 0$: contradiction.
 - (b) Supposons $w \cdot 0 \not\in L_2 \cdot 0$. Par définition, on a alors $w \cdot 0 \in L(M_w)$. Comme $M_w = M'$, on a donc $w \cdot 0 \in L(M') = L_2 \cdot 0$: contradiction.

L'hypothèse de départ nous amène à une contradiction. On en déduit que L_2 n'est pas semi-décidable.

2. Turing Club

Soit L un langage sur Σ semi-décidable tel que \overline{L} est non-semi-décidable. Quelle est la décidabilité du langage $L'=0\cdot L\cup 1\cdot \overline{L}$?

Solution. L' est non-semi-décidable.

Preuve.

Supposons^(*) L' semi-décidable. Par définition il existe donc une machine de Turing M telle que L(M) = L'. Il est alors relativement aisé de construire une machine de Turing M' qui :

- 1. Remplace le blanc situé avant le mot d'entrée w par un 1.
- 2. Puis se comporte comme M sur le mot 1w.

Série 12 solution 2

Par définition M' accepte w si et seulement si M accepte le mot 1w. Si M accepte le mot 1w cela signifie que $w \in \overline{L}$. Donc $L(M') = \overline{L}$, une contradiction vu que \overline{L} est non-semi-décidable. L'hypothèse (*) est donc fausse.