
Part VI: Type Systems

• Previously, we have considered statically untyped languages.
• We now look at type systems
• A type system is a set of rules which assigns types to parts of

programs.
• If some part of a program cannot be assigned a type, the program is

rejected with a type error.
• In the following, we will look at some simple type systems and their

properties.

1



Strong/Weak typing vs Static/Dynamic

typing

• A language is strongly typed or safe if violation of its rules will lead to
an error, rather than leading to unspecified behavior. Otherwise, we
say that the language is weakly typed or untyped.
• A language is statically typed if there is a type system which will

disallow certain programs before such programs are run.
• Static and strong typing are not the same:

strong weak

static

dynamic

2



• Usually, some safety checks are left until run-time (example: array
bounds checking) because they are impractical at compile-time.
• There are languages which guarantee complete safety at compile time,

e.g. Martin Loef’s type theories.
• But these require proofs of safety properties to be encoded explicitly

in the program.

Questions

• What to types signify or guarantee? (⇒ type soundness).
• Is type checking or type reconstruction possible?

3



The Simply Typed λ Calculus

• Task: Add types to λ calculus.
• Two versions:

• With explicitly given parameter types (Church)
• Without (Curry)

• We present the Curry version here.

4



Alphabets

Variables x, y, z

Type Variables a, b, c Type Constructors K

In practice, we use arbitrary words instead of single letters.

We write type constructors in upper case, type variables in lower case.

Examples:

x, f, true, width Variables

a, b, c Type variables

Boolean, List Type constructors

5



Syntax

Terms E,F ::= x Variable

| λx.E Abstraction

| F E Application

Types T,U ::= a Type variable

| T → U Function type

| K[T1, . . . , Tn] Data type

For type constructors without parameters, we simply write K instead of
K[].

Function arrows associate to the right: T1 → T2 → T3 = T1 → (T2 → T3)

6



Type Assignments

True : Boolean

Nil : List[Boolean]

λx.x : Boolean→ Boolean

: List[Boolean]→ List[Boolean]

: a→ a

λx.λy.x : a→ b→ a

(λx.λy.x)TrueNil : Boolean

(λf.λx.fx) :

(λf.λg.λx.f(gx) :

x :

λx.xy :

7



Type Judgments

... are of the form Γ ` E : T .

where Γ = (x1 : T1, . . . , xn : Tn) is a type environment consisting of a
series of variable/type bindings, one for each free variable x ∈ fn(E).

Read: “Under assumptions Γ, E has type T”.

Special case for closed terms (i.e. fn(E) = ∅):

` E : T “ E has type T ”

8



Deduction Systems

A Deduction system defines a formal language of judgments J , together
with rules which let one decide whether a judgment is derivable or not.

Rules take the form of axioms J and of deduction rules

J1 . . . Jn
J ′

A judgment J is derivable iff there is a proof tree such that

• Each leaf of the tree is an instance of an axiom.
• Each internal node of the tree is an instance of a deduction rule
• The root of the tree is the judgment J .

9



Intuitionistic Logic

The first deduction systems have been developed for logic calculi.

Example: positive intuitionistic logic.

Let P , Q range over propositions with constant true, operators ∧, ∨ and
⇒ (missing is false, ¬).

Let Π be a hypothesis, i.e. a set of propositions which is assumed to be
true.

Problem: How to decide whether Π implies P .

Solution: Give a deduction system for judgments of the form Π ` P .

10



Rules of Intuitionistic Logic

(True) Π ` true (Taut) Π ` P (P ∈ Π)

(∧I)
Π ` P Π ` Q

Π ` P ∧Q
(∧E)

Π ` P ∧Q

Π ` P

Π ` P ∧Q

Π ` Q

(⇒I)
Π, P ` Q

Π ` P ⇒ Q
(⇒E)

Π ` P ⇒ Q Π ` P

Π ` Q

(∨I)
Π ` P

Π ` P ∨Q

Π ` Q

Π ` P ∨Q

(∨E)
Π ` P ∨Q Π, P ` R Π, Q ` R

Π ` R

11



Example Proof

Let Π
def
≡ (P ∨Q), (P ⇒ Q).

Then:

Π ` P ∨Q

Π, P ` (P ⇒ R) Π, P ` P

Π, P ` R

Π, P ` Q ∨R

Π, Q ` Q

Π, Q ` Q ∨R

Π ` Q ∨R

(P ∨Q) ` (P ⇒ R)⇒ Q ∨R

` (P ∨Q)⇒ ((P ⇒ R)⇒ Q ∨R)

12



How to derive type judgments

Assume as given for each constant C a set typeof(C) of types.

Then we can derive type judgments by the following rules.

(Var) Γ, x : T,Γ′ ` x : T (x 6∈ dom(Γ′))

(→I)
Γ, x : T ` E : U

Γ ` λx.E : T → U

(→E)
Γ ` M : T → U Γ ` N : T

Γ ` M N : U

13



Examples

id ≡ λx.x : ?

apply ≡ λf.λx. f x : ?

twice ≡ λf.λx. f (f x) :

compose ≡ λf.λg. f (g x) :

Exercise: : Construct proofs for these judgements.

14



Constants and Polymorphism

Nearly all programs are not closed terms but make use of predefined
constants such as true or if.

We’d like to add these to an initial environment which is used to type
whole programs.

But some constants have multiple types.

Example:
Nil : List[Int]
Nil : List[List[Int]]
Nil : List[a]

We subsume all of these types by a type scheme (or: polymorphic type).

Type Scheme S ::= T | ∀a.S

15



Instantiation

Type schemes can be instantiated by the following elimination rule:

(∀E)
Γ ` E : ∀a.S

Γ ` E : [T/a]S

([T/a] is substitution. ∀a.S is called a type scheme or polymorphic type).

Example:

Γ ` Nil : ∀a.List[a]

Γ ` Nil : List[Int]

For the moment, we will admit polymorphism only for predefined
constants, therefore an introduction rule for ∀is missing.

16



Some Useful Constants and their types

Nil : ∀a.List[a]
Cons : ∀a.a → List[a] → List[a]
head : ∀a.List[a] → a
tail : ∀a.List[a] → List[a]
isEmpty : ∀a.List[a] → Boolean

true : Boolean
false : Boolean
if : ∀a. Boolean → a → a → a

0, 1, 2, ...: Int
plus : Int → Int → Int
eq : Int → Int → Boolean

fix : ∀a. (a → a) → a

17



Example

Let
length =

fix (λ length.λ xs.
if (isEmpty xs)

0
(plus 1 (length (tail (xs))))

Show

` length: List[a] → Int

18



Question: What do types signify?

Answer: “Types are sets of values”. E.g.

T ≈ {V | V : T}

where

Value V ::= x | λx.E

Question: Why is this useful?

Answer: Type judgements are preserved under reduction.

19



Subject Reduction and Type Soundness

Theorem: (Subject-Reduction) Γ ` E : T and E →→ F imply
Γ ` F : T .

Note: the converse of subject-reduction does not hold. I.e.

Γ ` F : T ∧ E →→ F 6⇒ Γ ` E : T

Definition: A language of terms E is type-sound if whenever ` E : T
then either E diverges or E reduces to a value of type T .

Type soundness is more than subject-reduction, since subject reduction
still admits reduction of terms to “get stuck” in a non-value.

Theorem: Simply-typed lambda calculus is type-sound.

20



Product- and Sum-Types

In system discussed so far does not yet have types for products and sums.

The product type T × U represents all pairs whose first component is of
type T and whose second component is of type U .

Problem: Design syntax and typing rules for formation of pairs and
operations on them.

The sum type T + U represents a tagged union of the types T and U .

Problem: Design syntax and typing rules for formation of tagged unions
and operations on them.

21



The Curry-Howard Isomorphism

The deduction system for intuitionistic logic and the deduction system for
simply typesd lambda calculus are remarkably similar!

We observe:

Formula ≈ Type

Hypothesis ≈ Type environment

⇒ ≈ →
∧ ≈ ×
∨ ≈ +

If types in lambda calculus are formulas of logic, what are the terms of
lambda calculus?

22



Terms Are Proofs

Given a type judgement Γ ` E : T , we can interprete E as a proof of the
formula represented by T .

Example 1: The deduction rule

Γ ` E1 : T1 Γ ` E2 : T2

Γ ` (E1, E2) : T1 × T2

can be interpreted as:

“Given a proof E1 of T1 and a proof E2 of T2 we combine the two proofs to
yield a proof of T1 ∧ T2.”

23



Logical Frameworks

The Curry-Howard Isomorphism is used in interactive theorem provers
such as LCF, ELF, HOL, Isabelle.

The user of such a prover encodes a proposition as a type and then proves
the proposition by presenting a term which has this type.

Type systems are usually richer than the one we have seen – in particular
they admit often admit types which depend on values.

Example: Array(N) – the types of arrays with length N .

24



Type Checking and Type Reconstruction

We now come to the question of type checking and type reconstruction.

Type checking:

Given Γ, E and T , check whether Γ ` E : T

Type reconstruction:

Given Γ and E, find a type T such that Γ ` E : T

Type checking and reconstruction seem difficult since parameters in
lambda calculus do not carry their types with them.

Type reconstruction also suffers from the problem that a term can have
many types.

Idea: : We construct all type derivations in parallel, reducing type
reconstruction to a unification problem.

25



From Judgements to Equations

TP : Judgement→ Equations

TP (Γ ` E : T ) =

case E of

x : {Γ(x) =̂ T}
λx.E′ : let a, b fresh in

{(a→ b) =̂ T} ∪
TP (Γ, x : a ` E′ : b)

E E′ : let a fresh in

TP (Γ ` E : a→ T ) ∪
TP (Γ ` E′ : a)

26



Constants

Constants are treated as variables in the initial environment.

However, we have to make sure we create a new instance of their type as
follows:

newInstance(∀a1, . . . , an.S) =

let b1, . . . , bn fresh in

[b1/a1, . . . , bn/an]S

TP (Γ ` E : T ) =

case E of

x : {newInstance(Γ(x)) =̂ T}
. . .

27



Soundness and Completeness I

Definition: In general, a type reconstruction algorithm A assigns to an
environment Γand a term E a set of types A(Γ, E).

The algorithm is sound if for every type T ∈ A(Γ, E) we can prove the
judgement Γ ` E : T .

The algorithm is complete if for every provable judgement Γ ` E : T we
have that T ∈ A(Γ, E).

28



Theorem: TP is sound and complete. Specifically:

Γ ` E : T iff ∃b.[T/a]EQNS

where

a is a new type variable

EQNS = TP (Γ ` E : a)

b = tv(EQNS)\tv(Γ)

Here, tv denotes the set of free type varibales (of a term, and environment,
an equation set).

29



Type Reconstruction and Unification

Problem: : Transform set of equations

{Ti =̂ Ui}i=1, ...,m

into equivalent substitution

{aj =̂ T ′j}j=1, ..., n

where type variables do not appear recursively on their right hand sides
(directly or indirectly). That is:

aj 6∈ tv(T ′k) for j = 1, . . . , n, k = j, . . . , n

30



Substitutions

A substitution s is an idempotent mapping from type variables to types
which maps all but a finite number of type variables to themselves.

We often represent a substitution is as set of equations a =̂ T with a not in
tv(T ).

Substitutions can be generalized to mappings from types to types by
definining

s(T → U) = sT → sU

s(K[T1, . . . , Tn]) = K[sT1, . . . , sTn]

Substitutions are idempotent mappings from types to types, i.e.
s(s(T )) = s(T ). (why?)

The ◦operator denotes composition of substitutions (or other functions):
(f ◦ g) x = f(gx).

31



A Unification Algorithm

We present an incremental version of Robinson’s algorithm (1965).

mgu : (Type =̂ Type)→ Subst→ Subst

mgu(T =̂ U) s = mgu′(sT =̂ sU) s

mgu′(a =̂ a) s = s

mgu′(a =̂ T ) s = s ∪ {a =̂ T} if a 6∈ tv(T )

mgu′(T =̂ a) s = s ∪ {a =̂ T} if a 6∈ tv(T )

mgu′(T → T ′ =̂ U → U ′) s = (mgu(T ′ =̂ U ′) ◦mgu(T =̂ U)) s

mgu′(K[T1, . . . , Tn] =̂ K[U1, . . . , Un]) s

= (mgu(Tn =̂ Un) ◦ . . . ◦mgu(T1 =̂ U1)) s

mgu′(T =̂ U) s = error in all other cases

32



Soundness and Completeness of Unification

Definition: A substitution u is a unifier of a set of equations
{Ti =̂ Ui}i=1, ...,m if uTi = uUi, for all i. It is a most general unifier if for
every other unifier u′ of the same equations there exists a substitution s

such that u′ = s ◦ u.

Theorem: Given a set of equations EQNS. If EQNS has a unifier then
mgu EQNS {} computes the most general unifier of EQNS. If EQNS
has no unifier then mgu EQNS {} fails.

33



From Judgements to Substitutions

TP : Judgement→ Subst→ Subst

TP (Γ ` E : T ) =

case E of

x : mgu(newInstance(Γx) =̂ T )

λx.E′ : let t, u fresh in

mgu((t→ u) =̂ T ) ◦
TP (Γ, x : t ` E′ : u)

E E′ : let t fresh in

TP (Γ ` E : a→ T ) ◦
TP (Γ ` E′ : a)

34



Soundness and Completeness II

One can show by comparison with the previous algorithm:

Theorem: TP is sound and complete. Specifically:

Γ ` E : T iff T = r(s(t))

where

t is a new type variable

s = TP (Γ ` E : t) {}
r is a substitution on tv(s t)\tv(s Γ)

35



Strong Normalization

Question: Can Ω be given a type?

Ω = (λx.xx)(λx.xx) :?

What about Y ?

Self-application is not typable!

In fact, we have more:

Theorem: (Strong Normalization) If ` E : T , then there is a value V
such that E →→ V .

Corollary: Simply typed lambda calculus is not Turing complete.

36


