Polymorphism

In the simply typed lambda calculus, a term can have many types.
But a variable or parameter has only one type.

Example:
(Az.xx)(A\y.y)

is untypable. But if we substitute actual parameter for formal, we obtain

Ay y)(Ay.y) sa — a

Functions which can be applied to arguments of many types are called

polymorphic.

Polymorphism in Programming

Polymorphism is essential for many program patterns.

Example: map

def map f xs =
if (isEmpty (xs)) nil
else cons (f (head xs)) (map (f, tail xs))

names: List[String]
nums : List[Int]

map toUpperCase names
map increment nums

Without a polymorphic type for map one of the last two lines is always

illegal!

Forms of Polymorphism

Polymorphism means “having many forms”.
Polymorphism also comes in several forms.

e Universal polymorphism, sometimes also called generic types: The
ability to instantiate type variables.

e Inclusion polymorphism, sometimes also called subtyping: The ability
to treat a value of a subtype as a value of one of its supertypes.

o Ad-hoc polymorphism, sometimes also called overloading: The ability

to define several versions of the same function name, with different
types.

We first concentrate on universal polymorphism.

Two basic approaches: explicit or implicit.

Explicit Polymorphism

We introduce a polymorphic type Va.T', which can be used just as any

other type.
We then need to make introduction and elimination of V’s explicit. Typing
rules:
I' V E:Va.T ' - E:T
(VE) (VI)

I' = EU]:[U/a|T ' - Aa.E:Va.T

We also need to give all parameter types, so programs become verbose.

Example:
def map [a][b] (f: a — b) (xs: List[a]) =

if (isEmpty [a] (xs)) nil [a]
else cons [b] (f (head [a] xs)) (map [a][b] (f, tail [a] xs))

names: List[String]
nums : List[Int]

map [String] [String] toUpperCase names
map [Int] [Int] increment nums

Implicit Polymorphism

Implicit polymorphism does not require annotations for parameter types or

type instantations.

Idea: In addition to types (as in simply typed lambda calculus), we have a
new syntactic category of type schemes. Syntax:

Type Scheme S = T | Va.S

Type schemes are not fully general types; they are used only to type

named values, introduced by a val construct.

The resulting type system is called the Hindley/Milner system, after its
inventors. (The original treatment uses let ... in ... rather than val ... ; ...).

Hindley /Milner Typing rules

(VAR) Tz : S, TV F x: S (x & dom(I"))

I' - E:VaT - E:T a ¢ tv(l)

(VI)
' - E:[U/alT I' - E:VaT

' - E:S x:S + E:T
I' - vale=FE;E':T

(VAL)

The other two rules are as in simply typed lambda calculus:

''e:T - E:U . ' - M:T-—-U I' E N:T

'+ Xe.B:T — U ' - MN:U

Hindley /Milner in Programming Languages

Here is a formulation of the map example in the Hindley /Milner system.

val map = Af. \xs.
if (isEmpty (xs)) nil
else cons (f (head xs)) (map (f, tail xs))

// names: List[String]
// nums : List[Int]
// map :Va.Vb.(a — b) — List[a] — List[b]

map toUpperCase names
map increment nums

Limitations of Hindley/Milner

Hindley /Milner still does not parameter types to be polymorphic. Le.

(A\z.xx)(A\y.y)

is still ill-typed, even though the following is well-typed:
val id = \y.y ; id id

With explicit polymorphism the expression could be completed to a
well-typed term:

(Aa.Xx : (Va : a — a).x|la — a](xz]a]))(Ab.Ay.y)

The Essence of val

We regard
vale = F ; '

as a shorthand for
|E/x|E

We use this equivalence to get a revised Hindley/Milner system.

Definition: Let HM' be the type system that results if we replace rule
(VAL) from the Hindley/Milner system HM by:

C-E:T T F [E/<E:U
' - vala=F ;E' :U

(VAL)

Theorem: T |_HM E.SiftId I_HM’ E:S

10

The theorem establishes the following connection between the

Hindley /Milner system and the simply typed lambda calculus F:

Corollary: Let E* be the result of expanding all val’s in £ according to

the rule
valx =F; E — |E/x|F
Then
I' gy BT = T Fp E*:T

Furthermore, if every val-bound name is used at least once, we also have

the reverse:
r |_F1 Ex:T = T bFygy E:T

11

Principal Types

Definition: A type T is a generic instance of a type scheme
S =Vay...Va,.T' if there is a substitution s on ay, ..., a, such that
T = sT’. We write in this case S < T.

Definition: A type scheme S’ is a generic instance of a type scheme S iff
for all types T°
S'<T = ST

We write in this case S < §’.

Definition: A type scheme S is principal (or: most general) for I' and E
iff

e ' E:S

e I' -V F:5 implies § <9

12

Definition: A type system T'S has the principal typing property iff,
whenever I' Fpg E : S then there exists a principal type scheme for I' and
E.

Theorem:
1. HM' without val has the p.t.p.
2. HM’ with val has the p.t.p.
3. HM has the p.t.p.

Proof sketch: (1.): Use type reconstruction result for the simply typed
lambda calculus. (2.): Expand all val’s and apply (1.). (3.): Use
equivalence between HM and HM’.

These observations could be used to come up with a type reconstruction
algorithm for HM. But in practice one takes a more direct approach.

13

Type Reconstruction for Hindley /Milner

Type reconstruction for the Hindley /Milner system works as for simply
typed lambda calculus. We only have to add a clause for val expressions:

TP : Judgement — Subst — Subst

TP(T + E:T)s=

case F of

valz = F1 ; F> : let a,bfresh in
letslzTP(F - Elza) in
TP (I',z:gen(sy I',s1a) F FEs:b) sy

where gen(I', T') = Vtv(T)\tv(I").T.

14

