
Polymorphism

In the simply typed lambda calculus, a term can have many types.

But a variable or parameter has only one type.

Example:

(λx.xx)(λy.y)

is untypable. But if we substitute actual parameter for formal, we obtain

(λy.y)(λy.y) : a→ a

Functions which can be applied to arguments of many types are called
polymorphic.

1



Polymorphism in Programming

Polymorphism is essential for many program patterns.

Example: map

def map f xs =
if (isEmpty (xs)) nil
else cons (f (head xs)) (map (f, tail xs))

...
names: List[String]
nums : List[Int]
...
map toUpperCase names
map increment nums

Without a polymorphic type for map one of the last two lines is always
illegal!

2



Forms of Polymorphism

Polymorphism means “having many forms”.

Polymorphism also comes in several forms.

• Universal polymorphism, sometimes also called generic types: The
ability to instantiate type variables.
• Inclusion polymorphism, sometimes also called subtyping: The ability

to treat a value of a subtype as a value of one of its supertypes.
• Ad-hoc polymorphism, sometimes also called overloading: The ability

to define several versions of the same function name, with different
types.

We first concentrate on universal polymorphism.

Two basic approaches: explicit or implicit.

3



Explicit Polymorphism

We introduce a polymorphic type ∀a.T , which can be used just as any
other type.

We then need to make introduction and elimination of ∀’s explicit. Typing
rules:

(∀E)
Γ ` E : ∀a.T

Γ ` E[U ] : [U/a]T
(∀I)

Γ ` E : T

Γ ` Λa.E : ∀a.T

4



We also need to give all parameter types, so programs become verbose.

Example:

def map [a][b] (f: a → b) (xs: List[a]) =
if (isEmpty [a] (xs)) nil [a]
else cons [b] (f (head [a] xs)) (map [a][b] (f, tail [a] xs))

...
names: List[String]
nums : List[Int]
...
map [String] [String] toUpperCase names
map [Int] [Int] increment nums

5



Implicit Polymorphism

Implicit polymorphism does not require annotations for parameter types or
type instantations.

Idea: In addition to types (as in simply typed lambda calculus), we have a
new syntactic category of type schemes. Syntax:

Type Scheme S ::= T | ∀a.S

Type schemes are not fully general types; they are used only to type
named values, introduced by a val construct.

The resulting type system is called the Hindley/Milner system, after its
inventors. (The original treatment uses let ... in ... rather than val ... ; ...).

6



Hindley/Milner Typing rules

(Var) Γ, x : S,Γ′ ` x : S (x 6∈ dom(Γ′))

(∀E)
Γ ` E : ∀a.T

Γ ` E : [U/a]T
(∀I)

Γ ` E : T a 6∈ tv(Γ)

Γ ` E : ∀a.T

(Val)
Γ ` E : S Γ, x : S ` E′ : T

Γ ` val x = E ; E′ : T

The other two rules are as in simply typed lambda calculus:

(→I)
Γ, x : T ` E : U

Γ ` λx.E : T → U
(→E)

Γ ` M : T → U Γ ` N : T

Γ ` M N : U

7



Hindley/Milner in Programming Languages

Here is a formulation of the map example in the Hindley/Milner system.

val map = λf.λxs.
if (isEmpty (xs)) nil
else cons (f (head xs)) (map (f, tail xs))

...
// names: List[String]
// nums : List[Int]
// map : ∀a.∀b.(a → b) → List[a] → List[b]
...
map toUpperCase names
map increment nums

8



Limitations of Hindley/Milner

Hindley/Milner still does not parameter types to be polymorphic. I.e.

(λx.xx)(λy.y)

is still ill-typed, even though the following is well-typed:

val id = λy.y ; id id

With explicit polymorphism the expression could be completed to a
well-typed term:

(Λa.λx : (∀a : a→ a).x[a→ a](x[a]))(Λb.λy.y)

9



The Essence of val

We regard
val x = E ; E′

as a shorthand for
[E/x]E′

We use this equivalence to get a revised Hindley/Milner system.

Definition: Let HM ′ be the type system that results if we replace rule
(Val) from the Hindley/Milner system HM by:

(Val’)
Γ ` E : T Γ ` [E/x]E′ : U

Γ ` val x = E ; E′ : U

Theorem: Γ `HM E : S iff Γ `HM ′ E : S

10



The theorem establishes the following connection between the
Hindley/Milner system and the simply typed lambda calculus F1:

Corollary: Let E∗ be the result of expanding all val’s in E according to
the rule

val x = E ; E′ → [E/x]E′

Then

Γ `HM E : T ⇒ Γ `F1 E∗ : T

Furthermore, if every val-bound name is used at least once, we also have
the reverse:

Γ `F1 E∗ : T ⇒ Γ `HM E : T

11



Principal Types

Definition: A type T is a generic instance of a type scheme
S = ∀a1 . . . ∀an.T ′ if there is a substitution s on a1, . . . , an such that
T = sT ′. We write in this case S ≤ T .

Definition: A type scheme S′ is a generic instance of a type scheme S iff
for all types T

S′ ≤ T ⇒ S ≤ T

We write in this case S ≤ S′.

Definition: A type scheme S is principal (or: most general) for Γ and E

iff

• Γ ` E : S
• Γ ` E : S′ implies S ≤ S′

12



Definition: A type system TS has the principal typing property iff,
whenever Γ `TS E : S then there exists a principal type scheme for Γ and
E.

Theorem:

1. HM ′ without val has the p.t.p.

2. HM ′ with val has the p.t.p.

3. HM has the p.t.p.

Proof sketch: (1.): Use type reconstruction result for the simply typed
lambda calculus. (2.): Expand all val’s and apply (1.). (3.): Use
equivalence between HM and HM ′.

These observations could be used to come up with a type reconstruction
algorithm for HM . But in practice one takes a more direct approach.

13



Type Reconstruction for Hindley/Milner

Type reconstruction for the Hindley/Milner system works as for simply
typed lambda calculus. We only have to add a clause for val expressions:

TP : Judgement→ Subst→ Subst

TP (Γ ` E : T ) s =

case E of

...

val x = E1 ; E2 : let a, b fresh in

let s1 = TP (Γ ` E1 : a) in

TP (Γ, x : gen(s1 Γ, s1 a) ` E2 : b) s1

where gen(Γ, T ) = ∀tv(T )\tv(Γ).T .

14


