
Part VII: Types for Object-Oriented

Programming

Object-oriented programming poses new challenges to type systems.

• Record types
• Subtyping
• Inheritance
• Classes
• Meaning of this.

Example Language: Mini-Funnel

1

Syntax of Mini-Funnel

Name x, y, z

Tyvar a, b, c

Ident I, J = x | I.x
Term E,F = x | E.x | E[T] | E F | def D ; E

| E & F | nil

Definition D = ε | D,D | L = E

Left-hand side L = I[a](x : T) : U | L & L′

Type S, T = a | {x1 : T1, . . . , xn : Tn} | T → U

| a.T | µa.T
Lifted Type U = T | nil

Environment Γ,Σ,∆ = ε | Γ, a | Γ, x : T

2

3

Remarks

• We use a minimal language subset, which exemplifies most of the
important typing problems.
• Other constructs can be added by deriving typing rules for a construct

from the construct’s expansion into the minimal language subset.
• nil is used as a constant for the empty process and as a name for the

types of processes (which no not return a result).
• Difference between types T and lifted types U : lifted types can be nil,

normal types cannot.
• To keep the formal treatment simple, we require explicit type

annotations everywhere. We expect that it’s possible to use clever
type inference for inserting most of these annotations automatically.

4

Type Equivalence

We assume the following equivalences between types.

• a-renaming: The names of ∀-bound type variables don’t matter. A
∀-prefix which binds an empty list of type variables may be dropped.

(a)
b 6∈ tv(T)

∀a.T ≡ ∀b.[b/a]T
(Empty) ∀ε.T ≡ T

• The order of fields in a record does not matter.

(Permute)
{i1, . . . , in} = {1, . . . , n}

{x1 : T1, . . . , xn : Tn} ≡ {xi1 : Ti1 , . . . , xin : Tin}

• A recursive type µa.T is equivalent to its (one-step) unfolding
[µa.T/a].T . Two recursive types are equivalent if their infinite
unfoldings are equivalent.

5

Well-formedness

Γ ` U wf In environment Γ, type U is well-formed. That is, all of U ’s
type variables are listed in Γ.

(Tvar-wf) Γ, a ` a wf (Nil-wf) Γ ` nil wf

(Rec-wf)
Γ ` T1 wf . . . Γ ` Tn wf

Γ ` {x1 : T1, . . . , xn : Tn} wf

(µ-wf)
Γ, a ` T wf

Γ ` µa.T wf

(Arrow-wf)
Γ ` T wf Γ ` U wf

Γ ` T → U wf

Γ, a ` T wf

Γ ` ∀a.T wf

6

Subtyping

Subtyping is defined by a deduction system for judgements of the form

S ≤ T ′ Type S is a subtype of type T .

Meaning: “Whereever a term of type T is required, a value of type S can
also be passed.”

This is expressed in the subsumption rule for type assignments (repeated
later).

(Sub)
Γ ` E : S S ≤ T

Γ ` E : T

Subtyping is reflexive and transitive:

(Refl) U ≤ U (Trans)
T1 ≤ T2 T2 ≤ T3

T1 ≤ T3

7

Subtyping Rules Continued

Records with ”more fields” are subtypes of records with fewer fields.

(Record)
T1 ≤ T ′1 . . . Tm ≤ T ′m

{x1 : T1, . . . , xm : Tm, . . . , xn : Tn} ≤ {x1 : T ′1, . . . , xm : T ′m}

Rule for type schemes:

(Forall)
T ≤ T ′

∀a.T ≤ ∀a.T ′

Two recursive types µa.S and µb.T are in a subtype relationship if their
inifinite unfoldings are.

Note: This is non-trivial to formalize and to type-check (but it’s possible).

8

Subtyping for Function Types

For function types, we have the following rule:

(Arrow)
T ′ ≤ T U ≤ U ′

T → U ≤ T ′ → U ′

Note that the subtyping relationship is reversed in the function arguments!

Why is this rule required?

One (somewhat loosely) calls this rule the contravariance rule for function
subtyping, because subtyping is reversed for function arguments.

9

Structural Subtyping vs Subtyping by

Declaration

We have seen an instance of structural subtyping, where a type is a subtype
of another purely because of the structure of the two types.

Many programming languages use instead subtyping by declaration, where
the subtyping relationship is explicitly declared.

In these languages a type declaration introduces a new type, with a given
set of fields and a given (set of) supertype(s).

Example: Objects with ”head” field, infinite lists:

type Headed [a] = { head: a}
type Stream [a] extends Headed [a] = {

head: a, tail: () → Stream [a]
}

10

Type Aliases

In Mini-Funnel, a type definition is seen just as an abbreviation which can
always be replaced by its right-hand side. (That’s why we don’t need to
have type definitions in the abstract syntax).

Example:

type Headed [a] = { head: a}
type Stream [a] = µs.{

head: a, tail: () → s
}

Note that

• We express recursion through µ-types.
• Stream[a] is a subtype of Headed[a] even without an explicit extends

clause.

Which scheme is preferable?

11

Type Assignment for Expressions

Γ ` E : U In environment Γ, term E has type U (where U can be nil).

(Taut) Γ, x : T ` x : T (Sub)
Γ ` E : S S ≤ T

Γ ` E : T

(Sel)
Γ ` E : {x : T}

Γ ` E.x : T
(Tapp)

Γ ` E : ∀a.T Γ ` S wf

Γ ` E[S] : [S/a]T

(Apply)
Γ ` E : T → U Γ ` F : T

Γ ` E F : U

12

(Fork)
Γ ` E : U Γ ` F : nil

Γ ` E & F : U
(Nil) Γ ` nil : nil

(Def)
Γ,Σ ` D : Σ Γ,Σ ` E : U

Γ ` (def D ; E) : U

Notation The , operator on environments and records is assumed to be
associative and commutative.

Furthermore, the operands Γ, Σ of a composition Γ,Σ are required to have
disjoint domains.

13

Type Assignment for Definitions

Γ ` D : Σ In environment Γ, the definitions D are well-typed and gen-
erate environment Σ. Σ binds exactly the functions defined
in D. Since definitions can be recursive, it is assumed that
all functions in Σ are already in Γ.

(Eqn)
Γ ` L : Σ ; ∆ Σ = I : ∀a.T → U,Σ′ Γ,∆ ` E : U

Γ ` L = E : Σ

(Empty) Γ ` ε : ε (Concat)
Γ ` D1 : Σ1 Γ ` D2 : Σ2

Γ ` D1, D2 : Σ1 ∧ Σ2

14

Notation

• ∧ is deep intersection, defined on types and environments consisting
only of value bindings as follows:

S ∧ T = S if S = T

= {Γ ∧ Σ} if S = {Γ}, T = {Σ}
is undefined otherwise

(Γ ∧ Σ)(x) = Γ(x) if x ∈ dom(Γ) \ dom(Σ)

= Σ(x) if x ∈ dom(Σ) \ dom(Γ)

= Γ(x) ∧ Σ(x) if x ∈ dom(Γ) ∩ dom(Σ)

• We sometimes write bindings of the form I : T , where I is a qualified
identifier. The environment I.x : T is taken to be equal to I : {x : T}.

15

Type Assignment for Left-hand Sides

Γ ` L : Σ ; ∆ In environment Γ, left-hand-side L generates function en-
vironment Σ and local environment ∆.

(Fun)
Γ, a ` T wf Γ, a ` U wf

Γ ` (I[a](x : T) : U) : (I : ∀a.T → U) ; (a, x : T)

(Join)
Γ ` L : Σ ; ∆ Γ ` L′ : Σ′ ; ∆′ Σ′ = (I : ∀a.T → nil)

Γ ` L & L′ : Σ ∧ Σ′ ; ∆,∆′

16

Derived Constructs

Add val definitions to Mini-Funnel:

Term E,F = ... | val x = E ; E′

Typing rule for val:

Add sequencing to Mini-Funnel:

Term E,F = ... | E ; E′

Typing rule:

17

Type Inference

The presented type system needs a lot of explicit type information.

Can we infer this information?

Constraints, as in the Hindley/Milner system don’t work here so well:

• Because of subsumption, we get subtyping constraints S ≤ T rather
than equality constraints T = U . Hence, unification is not applicable.

• Even without subtyping, ∀-quantifiers would make unification
undeciable.

Alternative: Use local type inference, to infer some type annotations.

Local type inference computes types by propagating information from
some part of the tree to neighboring parts.

18

Example: Given

def f(x: Int) = x + x

infer f’s result type to be Int.

Example: Given

x: Int, xs: List[Float]
Int ≤ Float
cons: ∀a.(a, List[a]) → List[a]

infer the missing type parameter in cons (x, List[xs]) to be [Float]:

cons [Float] (x, List[xs])

Generally, infer missing type parameters to be those types which make the
actual arguments match the formal parameters and which minimize the
result type.

An error results if no optimal type parameters exist.

19

Example:

Given
type ListVisitor [a,b] = {

def Nil: b
def Cons (x: a, xs: List [a]): b

}
type List [a] = {

def match [b] (v: ListVisitor [a, b]): b
}

infer that in the definition
def append (xs: List[String], ys: List[String]) = {

xs.match {
def Nil = ys
def Cons (x, xs1) = List.Cons (x, append (xs, ys))

}
}

the following holds:

20

• The record argument of xs.match is a ListVisitor[String,b] for some
unknown b.

• Therefore, the full types of the Nil and Cons fields are:
Nil: b
Cons: (x: String, xs: List [String]) → b

(Parameter types are inferred).
• Therefore, the result type of the visitor is List[String], which is then

also the type parameter for match.

Fully typed output of type inference:

def append (xs: List[String], ys: List[String]): List[String] = {
xs.match [List[String]] {

def Nil: List[String] = ys
def Cons (x: String, xs1: List[String]): List[String] =

List.Cons [String] (x, append (xs, ys))
}

}

21

See also:

• Benjamin Pierce and David Turner; Local Type Inference; Proc. ACM
Symposium on Principles of Programming Languages, 1996. (their
techniques solve the first two examples).
• Our current research (solves all three).

22

