Foundations of Programming – Concurrency – Session 9 – April 15, 2002

Uwe Nestmann

EPFL-LAMP

Foundations of Programming - Concurrency - Session 9 - April 15, 2002 - (produced on April 14, 2002, 18:39) - p.1/24

Session 9: CCS

- \Box repetition of algebraic notions
- ☐ equivalence on transition systems
- □ simulation
- □ strong bisimulation
- □ weak bisimulation

Repetition of Algebraic Notions

relations/functions

- composition
- ☐ comparison, containment

preorder/equivalence

- □ reflexivity
- □ symmetry
- □ transitivity
- \Box kernel of a (reflexive) preorder
- □ comparison, containment vs fine/coarse
- \Box congruence

Tea ? Coffee ?

Compare p_0 and q_0 in the following LTS:

{ $(p_0, 2c, p_1), (p_1, 2c, p_2), (p_1, \overline{tea}, p_0), (p_2, \overline{coffee}, p_0),$

 $(q_0, \mathbf{2c}, q_1), (q_0, \mathbf{2c}, q'_1), (q_1, \mathbf{2c}, q_2), (q'_1, \overline{\mathbf{tea}}, q_0), (q_2, \overline{\mathbf{coffee}}, q_0), \}$

In which sense are they different or equivalent?

Equivalence on LTS ?

Example: Compare p_0 and q_0 in

 $\{ (p_0, a, p_1), (p_1, b, p_2), (p_1, c, p_3),$ $(q_0, a, q_1), (q_0, a, q'_1), (q_1, b, q_2), (q'_1, c, q_3) \}$

Induce simulation of paths through step-by-step simulation of actions ...

(Strong) Simulation on LTS

Definition: (learn it by heart!) Let (Q, T) be an LTS.

1. Let S be a binary relation over Q. S is a **(strong) simulation** over (Q, T) if, whenever p S q,

if $p \xrightarrow{\alpha} p'$ then there is $q' \in \mathcal{Q}$ such that $q \xrightarrow{\alpha} q'$ and $p' \mathcal{S} q'$.

2. *q* (strongly) simulates *p*, written $p \leq q$, if there is a (strong) simulation S such that p S q.

The relation \leq is sometimes called *similarity*.

Properties of Simulations

<u>Lemma:</u>

If \mathcal{S}_1 and \mathcal{S}_2 are simulations, then

- $\Box \ \mathcal{S}_1 \cup \mathcal{S}_2$ is also a simulation.
- $\Box \ \mathcal{S}_1 \cap \mathcal{S}_2$ is also a simulation ?

 $\Box \ \mathcal{S}_1 \mathcal{S}_2$ is also a simulation ?

$\begin{array}{l} \underline{\text{Definition:}} \ \text{Let} \ (\mathcal{Q}, \mathcal{T}) \ \text{be a LTS.} \\ \\ \preceq \stackrel{\text{def}}{=} \ \bigcup \{ \ \mathcal{S} \mid \mathcal{S} \ \text{is simulation over} \ (\mathcal{Q}, \mathcal{T}) \ \} \end{array}$

Lemma:

- $\Box \preceq$ is the largest simulation over $(\mathcal{Q}, \mathcal{T})$.
- $\Box \ \preceq \text{ is a reflexive preorder over } \mathcal{Q} \times \mathcal{Q}.$

Working with Simulation

BTW, is any simulation a preorder?

What do we do with simulations?

exhibiting a simulation:

- "guessing" a simulation \mathcal{S} that contains (p,q)
- *"generating*" a simulation: do it algorithmically !
 → bisimulation-checking algorithms (CWB)
 - \rightarrow decidability ?
- \Box checking a simulation:

check that a given relation \mathcal{S} is in fact a simulation.

Home-Working with Simulation

Example: Find all non-trivial simulations in

 $\{(1, b, 2), (1, c, 3), (4, b, 5), (6, b, 7), (6, c, 8), (6, c, 9)\}$

How many are there ?

Trivial pairs are any pairs with elements from $\{2, 3, 5, 7, 8, 9\}$ (because there are no transitions), as well as any identity on $\{1, 4, 6\}$.

Trivial simulations are those that either

(0) are empty, or

(1) contain only trivial pairs, or

(2) contain at least one trivial pair that is not reachable from a contained non-trivial one.

Towards Equivalence

Simulation is only a preorder, thus it allows us to *distinguish* states.

We want instead an equivalence, which would allow us to *equate* states.

The mathematical way: just take the "kernel"

p = q if p < q and q < p

However, there are two different natural candidates !

- mutual simulation
- □ bisimulation

Mutual Simulation: Back and Forth

<u>Definition</u>: Let (Q, T) be a LTS. Let $\{p, q\} \subseteq Q$.

p and *q* are **mutually similar**, written $p \ge q$, if there is a pair (S_1, S_2) of simulations S_1 and S_2 with $p S_1 q S_2 p$ (i.e., with $p S_1 q$ and $q S_2 p$).

Mutual Simulation (II)

Proposition:

 $\Box \ge$ is an equivalence relation.

Proof?

Typical research-craftsmen work ...

(Strong) Bisimulation

<u>Definition:</u> (learn it by heart!) A binary relation \mathcal{B} over \mathcal{Q} is a (strong) bisimulation over the LTS $(\mathcal{Q}, \mathcal{T})$

if both \mathcal{B} and its converse \mathcal{B}^{-1} are (strong) simulations.

p and *q* are (strongly) bisimilar, written $p \sim q$, if there is a (strong) bisimulation \mathcal{B} such that $p \mathcal{B} q$.

 $\sim \stackrel{\text{def}}{=} \bigcup \{ \mathcal{B} \mid \mathcal{B} \text{ is bisimulation over } (\mathcal{Q}, \mathcal{T}) \}$

(Strong) Bisimulation (II)

Proposition:

- $\Box~\sim$ is an equivalence relation.
- $\square \sim$ is (itself) a (strong) bisimulation.
- $\Box~\sim$ is the largest (strong) bisimulation.

Proof?

Again, typical research-craftsmen work

Example

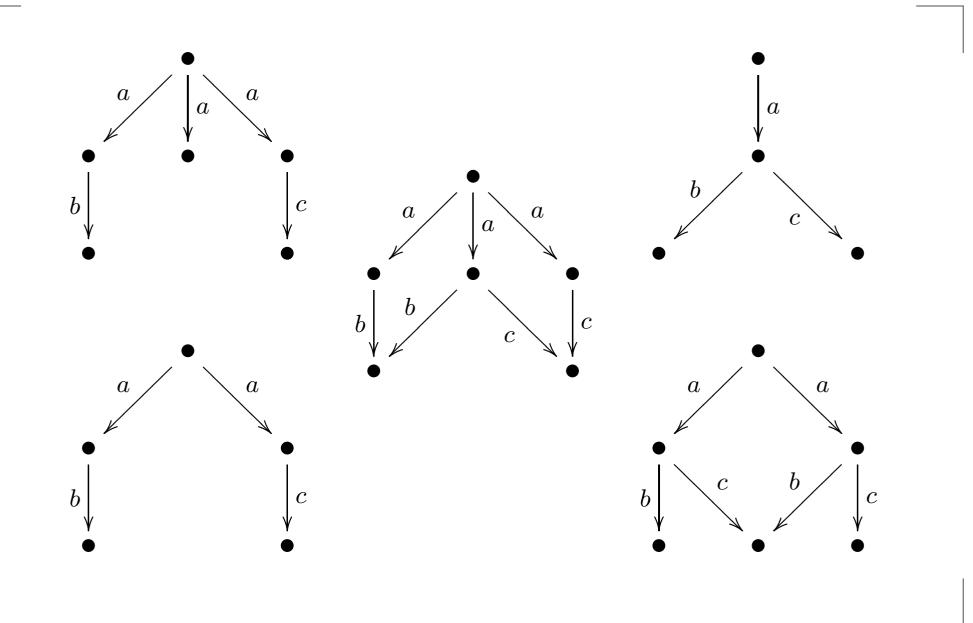
$$\{ (1, a, 2), (1, a, 3), (2, a, 3), (2, b, 1), (3, a, 3), (3, b, 1), (4, a, 5), (5, a, 5), (5, b, 6), (6, a, 5), (7, a, 8), (8, a, 8), (8, b, 7) \}$$

Prove $1 \sim 4 \sim 6 \sim 7$.

Write out $\sim \dots$

Minimization ?!

Example: Mutual vs Bi



Towards Observation Equivalence

Let us assume that our LTSs may dispose of a single distinguished *internal action* symbol, say: τ , as is the case for our language of concurrent process expressions. Then:

"Different internal behavior" should "not count" !

Definition: (observations / weak actions)

1.
$$\Rightarrow \stackrel{\text{def}}{=} \rightarrow^*$$

2. $\stackrel{\lambda}{\Rightarrow} \stackrel{\text{def}}{=} \Rightarrow \stackrel{\lambda}{\rightarrow} \Rightarrow$

Weak Simulation

Definition:

 ${\cal S}$ is a weak simulation iff, whenever $p \; {\cal S} \; q$,

$$\Box \text{ if } p \to p' \text{ then there is } q' \\ \text{such that } q \Rightarrow q' \text{ and } p' \mathcal{S} q'.$$

$$\Box \text{ if } p \xrightarrow{\lambda} p' \text{ then there is } q' \\ \text{such that } q \xrightarrow{\lambda} q' \text{ and } p' \mathcal{S} q'.$$

q weakly simulates p, if there is a weak simulation S such that p S q.

Example:

Prove that $Q = \tau.a.\tau.b.Q$ simulates P = a.b.P.

Weak Bisimulation

Definition:

... (* straightforward / no surprise *)

p and q are weakly bisimilar, weakly equivalent, or observation equivalent, written $p \approx q$, if there exists a weak bisimulation \mathcal{B} with $p \mathcal{B} q$.

 $\approx \stackrel{\mathrm{def}}{=} \bigcup \{ \mathcal{B} \mid \mathcal{B} \text{ is weak bisimulation over } (\mathcal{Q}, \mathcal{T}) \}$

Proposition:

- 1. \approx is an equivalence relation.
- 2. \approx is itself a weak bisimulation.

Strong vs Weak

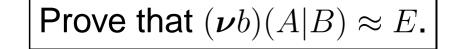
- 1. every strong simulation is also a weak one
- 2. $p \sim q$ implies $p \approx q$
- 3. see examples later on ...

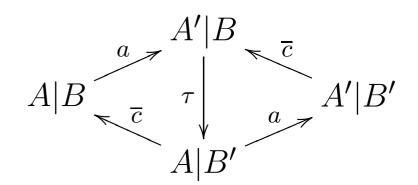
Example

$$A \stackrel{\text{def}}{=} a.A' \quad (= a.\overline{b}.A)$$
$$A' \stackrel{\text{def}}{=} \overline{b}.A$$
$$B \stackrel{\text{def}}{=} b.B' \quad (= b.\overline{c}.B)$$
$$B' \stackrel{\text{def}}{=} \overline{c}.B$$

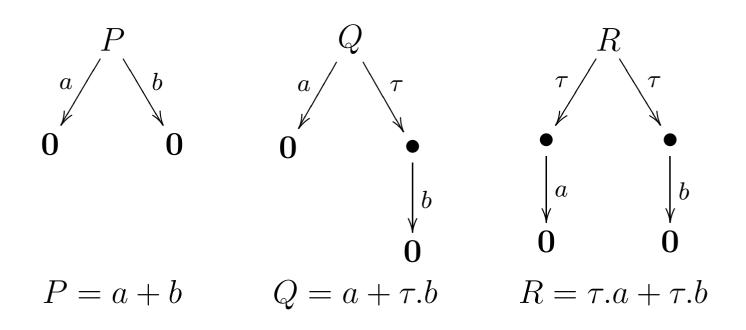
$$E \stackrel{\text{def}}{=} a.E'$$
$$E' \stackrel{\text{def}}{=} a.E'' + \overline{c}.E$$
$$E'' \stackrel{\text{def}}{=} \overline{c}.E'$$

 $E \xrightarrow{a} E' \xrightarrow{a} E''$

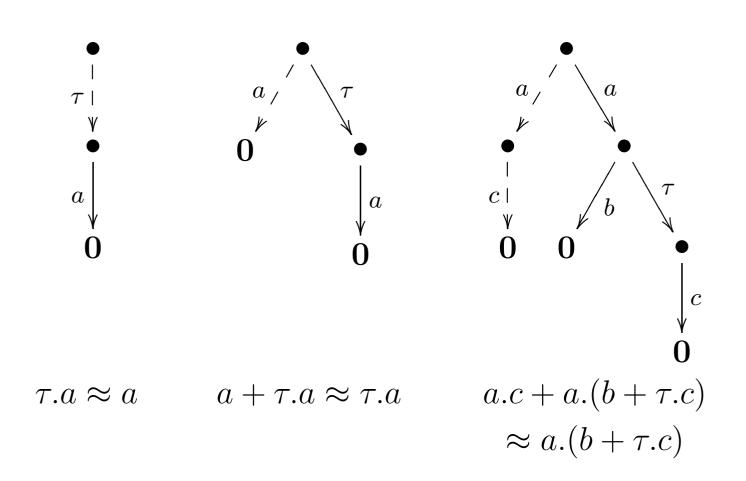




Some Inequivalences



Some Equivalences



Some Equations

Theorem:

Let P be any process. Let N, M any summations. Then:

- **1.** $P \approx \tau . P$
- **2.** $M + N + \tau N \approx M + \tau N$
- **3.** $M + \alpha P + \alpha (\tau P + N) \approx M + \alpha (\tau P + N)$