
Foundations of Programming

– Concurrency –

Session 9 – April 15, 2002

Uwe Nestmann

EPFL-LAMP

Foundations of Programming – Concurrency – Session 9 – April 15, 2002 – (produced on April 14, 2002, 18:39) – p.1/24

Session 9: CCS

� repetition of algebraic notions

� equivalence on transition systems

� simulation

� strong bisimulation

� weak bisimulation

Foundations of Programming – Concurrency – Session 9 – April 15, 2002 – (produced on April 14, 2002, 18:39) – p.2/24

Repetition of Algebraic Notions

relations/functions

� composition
� comparison, containment

preorder/equivalence

� reflexivity
� symmetry
� transitivity
� kernel of a (reflexive) preorder
� comparison, containment vs fine/coarse
� congruence

Foundations of Programming – Concurrency – Session 9 – April 15, 2002 – (produced on April 14, 2002, 18:39) – p.3/24

Tea ? Coffee ?

Compare p0 and q0 in the following LTS:
{ (p0, 2c, p1), (p1, 2c, p2), (p1, tea, p0), (p2, coffee, p0),

(q0, 2c, q1), (q0, 2c, q′
1
), (q1, 2c, q2), (q

′

1
, tea, q0), (q2, coffee, q0), }

In which sense are they different or equivalent?

Foundations of Programming – Concurrency – Session 9 – April 15, 2002 – (produced on April 14, 2002, 18:39) – p.4/24

Equivalence on LTS ?

Example: Compare p0 and q0 in

{ (p0, a, p1), (p1, b, p2), (p1, c, p3),

(q0, a, q1), (q0, a, q′
1
), (q1, b, q2), (q

′

1
, c, q3) }

Induce simulation of paths
through step-by-step simulation of actions . . .

Foundations of Programming – Concurrency – Session 9 – April 15, 2002 – (produced on April 14, 2002, 18:39) – p.5/24

(Strong) Simulation on LTS

Definition: (learn it by heart!)
Let (Q, T) be an LTS.

1. Let S be a binary relation over Q.
S is a (strong) simulation over (Q, T) if, whenever p S q,

if p
α

−−→ p′ then there is q′ ∈ Q such that q
α

−−→ q′ and p′ S q′ .

2. q (strongly) simulates p, written p � q,
if there is a (strong) simulation S such that p S q.

The relation � is sometimes called similarity.

Foundations of Programming – Concurrency – Session 9 – April 15, 2002 – (produced on April 14, 2002, 18:39) – p.6/24

Properties of Simulations

Lemma:
If S1 and S2 are simulations, then

� S1 ∪ S2 is also a simulation.

� S1 ∩ S2 is also a simulation ?

� S1S2 is also a simulation ?

Definition: Let (Q, T) be a LTS.

�
def
=

⋃
{ S | S is simulation over (Q, T) }

Lemma:

� � is the largest simulation over (Q, T).

� � is a reflexive preorder over Q×Q.

Foundations of Programming – Concurrency – Session 9 – April 15, 2002 – (produced on April 14, 2002, 18:39) – p.7/24

Working with Simulation

BTW, is any simulation a preorder?

What do we do with simulations?

� exhibiting a simulation:

• “guessing” a simulation S that contains (p, q)

• “generating” a simulation: do it algorithmically !
→ bisimulation-checking algorithms (CWB)
→ decidability ?

� checking a simulation:
check that a given relation S is in fact a simulation.

Foundations of Programming – Concurrency – Session 9 – April 15, 2002 – (produced on April 14, 2002, 18:39) – p.8/24

Home-Working with Simulation

Example: Find all non-trivial simulations in

{(1, b, 2), (1, c, 3), (4, b, 5), (6, b, 7), (6, c, 8), (6, c, 9)}

How many are there ?

Trivial pairs are any pairs with elements from {2, 3, 5, 7, 8, 9}
(because there are no transitions),
as well as any identity on {1, 4, 6}.

Trivial simulations are those that either
(0) are empty, or
(1) contain only trivial pairs, or
(2) contain at least one trivial pair that is not reachable from a
contained non-trivial one.

Foundations of Programming – Concurrency – Session 9 – April 15, 2002 – (produced on April 14, 2002, 18:39) – p.9/24

Towards Equivalence

Simulation is only a preorder,
thus it allows us to distinguish states.

We want instead an equivalence,
which would allow us to equate states.

The mathematical way: just take the “kernel”

p = q if p < q and q < p

However, there are two different natural candidates !

� mutual simulation

� bisimulation

Foundations of Programming – Concurrency – Session 9 – April 15, 2002 – (produced on April 14, 2002, 18:39) – p.10/24

Mutual Simulation: Back and Forth

Definition:
Let (Q, T) be a LTS. Let {p, q} ⊆ Q.

p and q are mutually similar, written p ≷ q,
if there is a pair (S1,S2) of simulations S1 and S2

with p S1 q S2 p (i.e., with p S1 q and q S2 p).

Foundations of Programming – Concurrency – Session 9 – April 15, 2002 – (produced on April 14, 2002, 18:39) – p.11/24

Mutual Simulation (II)

Proposition:

� ≷ is an equivalence relation.

Proof?

Typical research-craftsmen work . . .

Foundations of Programming – Concurrency – Session 9 – April 15, 2002 – (produced on April 14, 2002, 18:39) – p.12/24

(Strong) Bisimulation

Definition: (learn it by heart!)
A binary relation B over Q is
a (strong) bisimulation over the LTS (Q, T)

if both B and its converse B−1 are (strong) simulations .

p and q are (strongly) bisimilar, written p ∼ q,
if there is a (strong) bisimulation B such that p B q.

∼
def
=

⋃
{ B | B is bisimulation over (Q, T) }

Foundations of Programming – Concurrency – Session 9 – April 15, 2002 – (produced on April 14, 2002, 18:39) – p.13/24

(Strong) Bisimulation (II)

Proposition:

� ∼ is an equivalence relation.

� ∼ is (itself) a (strong) bisimulation.

� ∼ is the largest (strong) bisimulation.

Proof?

Again, typical research-craftsmen work . . .

Foundations of Programming – Concurrency – Session 9 – April 15, 2002 – (produced on April 14, 2002, 18:39) – p.14/24

Example

{ (1, a, 2), (1, a, 3), (2, a, 3), (2, b, 1), (3, a, 3), (3, b, 1),

(4, a, 5), (5, a, 5), (5, b, 6), (6, a, 5),

(7, a, 8), (8, a, 8), (8, b, 7) }

Prove 1 ∼ 4 ∼ 6 ∼ 7.

Write out ∼ . . .

Minimization ?!

Foundations of Programming – Concurrency – Session 9 – April 15, 2002 – (produced on April 14, 2002, 18:39) – p.15/24

Example: Mutual vs Bi

•
a

��~~~~~~~
a

��

a

��@@@@@@@

•

b

��

• •

c

��
• •

•
a

��~~~~~~~
a

��@@@@@@@

•

b

��

•

c

��
• •

•
a

��~~~~~~~
a

��

a

��@@@@@@@

•

b

��

•
b

��~~~~~~~

c ��@@@@@@@ •

c

��
• •

•

a

��
•

b

��~~~~~~~

c ��@@@@@@@

• •

•
a

��~~~~~~~
a

��@@@@@@@

•

b

��

c

��@@@@@@@ •
b

��~~~~~~~
c

��
• • •

Foundations of Programming – Concurrency – Session 9 – April 15, 2002 – (produced on April 14, 2002, 18:39) – p.16/24

Towards Observation Equivalence

Let us assume that our LTSs may dispose of a single
distinguished internal action symbol, say: τ , as is the case for
our language of concurrent process expressions. Then:
“Different internal behavior” should “not count” !

Definition: (observations / weak actions)

1. =⇒
def
= −→

∗

2. λ
==⇒

def
= =⇒

λ

−−→ =⇒

Foundations of Programming – Concurrency – Session 9 – April 15, 2002 – (produced on April 14, 2002, 18:39) – p.17/24

Weak Simulation

Definition:
S is a weak simulation iff, whenever p S q,

� if p −→ p′ then there is q′

such that q =⇒ q′ and p′ S q′.

� if p
λ

−−→ p′ then there is q′

such that q
λ

==⇒ q′ and p′ S q′.

q weakly simulates p,
if there is a weak simulation S such that p S q.

Example:
Prove that Q = τ.a.τ.b.Q simulates P = a.b.P .

Foundations of Programming – Concurrency – Session 9 – April 15, 2002 – (produced on April 14, 2002, 18:39) – p.18/24

Weak Bisimulation

Definition:
. . . (* straightforward / no surprise *)

p and q are weakly bisimilar,
weakly equivalent, or observation equivalent,
written p ≈ q,
if there exists a weak bisimulation B with p B q.

≈
def
=

⋃
{ B | B is weak bisimulation over (Q, T) }

Proposition:

1. ≈ is an equivalence relation.

2. ≈ is itself a weak bisimulation.

Foundations of Programming – Concurrency – Session 9 – April 15, 2002 – (produced on April 14, 2002, 18:39) – p.19/24

Strong vs Weak

1. every strong simulation is also a weak one

2. p ∼ q implies p ≈ q

3. see examples later on . . .

Foundations of Programming – Concurrency – Session 9 – April 15, 2002 – (produced on April 14, 2002, 18:39) – p.20/24

Example

A
def
= a.A′ (= a.b.A)

A′ def
= b.A

B
def
= b.B′ (= b.c.B)

B′ def
= c.B

E
def
= a.E′

E′ def
= a.E′′ + c.E

E′′ def
= c.E′

Prove that (νb)(A|B) ≈ E.

A′|B

τ

��
A|B

a 66mmmmmm
A′|B′

chhQQQQQQ

A|B′

chhQQQQQQ
a 66mmmmmm

E
a //

E′

c

oo

a //
E′′

c

oo

Foundations of Programming – Concurrency – Session 9 – April 15, 2002 – (produced on April 14, 2002, 18:39) – p.21/24

Some Inequivalences

P

a

��������
b

��222222

0 0

Q

a

��

τ

��111111

0 •

b

��
0

R
τ

��������
τ

��333333

•

a

��

•

b

��
0 0

P = a + b Q = a + τ.b R = τ.a + τ.b

Foundations of Programming – Concurrency – Session 9 – April 15, 2002 – (produced on April 14, 2002, 18:39) – p.22/24

Some Equivalences

•

τ

���
�
�

•

a

��
0

•
a

��

τ

��111111

0 •

a

��
0

•
a

���
�

�
a

��222222

•

c

���
�
� •

b��

τ

��111111

0 0 •

c

��
0

τ.a ≈ a a + τ.a ≈ τ.a a.c + a.(b + τ.c)

≈ a.(b + τ.c)

Foundations of Programming – Concurrency – Session 9 – April 15, 2002 – (produced on April 14, 2002, 18:39) – p.23/24

Some Equations

Theorem:
Let P be any process.
Let N,M any summations. Then:

1. P ≈ τ.P

2. M + N + τ.N ≈ M + τ.N

3. M + α.P + α(τ.P + N) ≈ M + α(τ.P + N)

Foundations of Programming – Concurrency – Session 9 – April 15, 2002 – (produced on April 14, 2002, 18:39) – p.24/24

	 Session 9: CCS
	 Repetition of Algebraic Notions
	 Tea ? Coffee ?
	 Equivalence on LTS ?
	 (Strong)
Simulation on LTS
	 Properties of Simulations
	 Working with Simulation
	 	extcolor {red}{Home-}	extcolor {blue}{Working with Simulation}
	 Towards Equivalence
	Mutual Simulation: Back and Forth
	Mutual Simulation (II)
	(Strong)
Bisimulation
	(Strong)
Bisimulation (II)
	 Example
	 Example: Mutual vs Bi
	 Towards Observation Equivalence
	 Weak Simulation
	 Weak Bisimulation
	 Strong vs Weak
	 Example
	 Some Inequivalences
	 Some Equivalences
	 Some Equations

