o N

Foundations of Programming
— Concurrency —
Session 8 — April 11, 2002

Uwe Nestmann

EPFL-LAMP

Goals
E Session 8

e from A-calculus to CCS: towards concurrency
e Structural Operational Semantics (SOS)

[1 Session 9 & 10
e equivalence in CCS: bisimulation
e Vverification using the Concurrency WorkBench (CWB)

[] Session 11 & 12
e from CCS to n-calculus: pragmatics, syntax, semantics
e programming in (Nomadic) Pict

[1 Session 13 & 14
e from M/ r-calculus to join-calculus: towards distribution

L e back to funnel J

Foundations of Programming — Concurrency — Session 8 — April 11, 2002 — (produced on April 10, 2002, 18:59) — p.2/28

Session 8: from)\ to CCS
-

[J reduction systems / transition systems / automata

foundational calculi?

[1 CCS: Calculus for Communicating Systems
[J communication & concurrency constructs
[J Structural Operational Semantics (SOS)

Books by Robin Milner:

1 “Communication and Concurrency”
Prentice Hall, 19809.

0 “communication and mobile systems: the w-calculus”
Cambridge University Press, 1999.

o |

Foundations of Programming — Concurrency — Session 8 — April 11, 2002 — (produced on April 10, 2002, 18:59) — p.3/28

Foundational Calculi ?
-

We are interested in the foundations of programming, and weT
use mini-languages as vehicles that guide our intuition and style

of expression. When does such a mini-language deserve to be
called a “calculus”?

[1 few primitives

1 mathematically tractable
e calculate computational steps
e Nnotion of equivalence

[J computationally complete (Turing, URM, GOTO, ...)

] “naturally complete”: design of programming languages
e easily “extensible” via encodings

L e higher-order principles J

Foundations of Programming — Concurrency — Session 8 — April 11, 2002 — (produced on April 10, 2002, 18:59) — p.4/28

Concurrency?
@ parallelism T
[J distribution: logical vs physical concurrency

[J synchronization
communication
cooperation
coordination

— foundational calculus for concurrency ?

o |

Foundations of Programming — Concurrency — Session 8 — April 11, 2002 — (produced on April 10, 2002, 18:59) — p.5/28

A-Calculus
. -

Syntax (for example)
a BNF-grammar generates the set of expressions ...

M,N ==z | AN | MN

[0 Semantics (for example)
a set of inference rules generates (and controls) the
possible reductions of terms

O NI = [(MJalN
M — M N — N’
(FUN) , (ARG) ,
MN — M'N MN — MN

o |

Foundations of Programming — Concurrency — Session 8 — April 11, 2002 — (produced on April 10, 2002, 18:59) — p.6/28

Typical Reduction(Sequence)s in A
-

(1 determinism? T

] confluence?

] termination?

Foundations of Programming — Concurrency — Session 8 — April 11, 2002 — (produced 002, 18:59) — p.7/28

Functional vs Concurrent Programming

-

-

functional concurrent
determinism possible ?
confluence | wanted/needed ?
termination ? ?
foundation A CCS, 7, (Petri nets, ...)
ff-language | ML, funnel, ... Pict, Join, funnel, ...

|

Foundations of Programming — Concurrency — Session 8 — April 11, 2002 — (produced on April 10, 2002, 18:59) — p.8/28

Essence
-

functional / reduction systems:

e reduce a term to value form
e only the resulting value is interesting
e Observation after termination

[1 concurrent / reactive systems:

e describe the the possible interactions during evaluation
e the resulting value is not (necessarily) interesting
e Observation through and during interaction

The notion of interaction (communication) is important !

Hoare (CSP) and Milner (CCS) proposed
ﬁmdshake-communication as the primitive form of interactionJ

Foundations of Programming — Concurrency — Session 8 — April 11, 2002 — (produced on April 10, 2002, 18:59) — p.9/28

CCS

1 process identifiers A, B ...

N names a,b,c...

N co-names a,b,c...

L labels (buttons) metavariables \... € £L: =N UN
A actions metavariables u, 5... € LU {7}

[visible/external actions: labels
[invisible/internal actions: 7
[finite sequences a for names «a; ... , a, (not co-names!)

[1 parametric processes A{a,c) with
name parameters (neither co-names, nor labels, ...)

o |

Foundations of Programming — Concurrency — Session 8 — April 11, 2002 — (produced on April 10, 2002, 18:59) — p.10/28

Sequential Process Expressions (1)

o "

efinition: The set P4 of seq. proc. exp. is defined (precisely)
by the following BNF-syntax:

P == Ad) | M
M == 0 | pwP | M+M
We use P, (Q, P; ... to stand for process expressions,

while M, M; always stand for summations.
We also use the abbreviation

> wi-Pi= P+ 4 Py
icl

where [Is the finite indexing set {1... ;n}.
LNote that then the order of summands is not fixed. J

Foundations of Programming — Concurrency — Session 8 — April 11, 2002 — (produced on April 10, 2002, 18:59) — p.11/28

Sequential Process Expressions (11)
-

each process identifier A is assumed to have a defining
eguation (note the brackets)

where M4 IS a summation, a is (or: includes) fn(My4).
fn(P): the set of all of the (free) names of P

—

A({b) means the same as [%]MA

substitution [’/;| P (for matching b and @)
replaces all occurrences of a; In P by b;.

|

Foundations of Programming — Concurrency — Session 8 — April 11, 2002 — (produced on April 10, 2002, 18:59) — p.12/28

Inductive Definitions

o N

Definition: The set fn(P) is defined inductively by:

R R
fn(0) Lo

f (. P) © f(p) U fn(P)

(M, + M) & (M) U (M)
m(A(@) < {a}

o |

Foundations of Programming — Concurrency — Session 8 — April 11, 2002 — (produced on April 10, 2002, 18:59) — p.13/28

Inductive Definitions (I1)
-

Definition: Substitution is defined inductively by:

/

b det é if g i f

el = b ifpu=c
|1 otherwise

’:J0 =0

b/.) (- P) N AT AT

DMy + Mz) € [L)My + [P My

o |

Foundations of Programming — Concurrency — Session 8 — April 11, 2002 — (produced on April 10, 2002, 18:59) — p.14/28

Simultaneous Substitution

-

Try to compute:

a.c - def a c _
[bac) oplabe S (8 % Chlabe=. ..

il 002, 18:59) — p.15/28

Inductive Definitions (111)
. .

Definition: Simultaneous substitution is defined inductively by:

Letb=1by... .bpandc=cy... . cp.

(b ifF<i<nwith y = c;
/el ©Lh T<i<nwithp =3
- otherwise
/40 0
b def P 7
/&) (1. P) = [u%P

DMy + Mz) My + [P My

L{%}(M» o APa) N

Foundations of Programming — Concurrency — Session 8 — April 11, 2002 — (produced on April 10, 2002, 18:59) — p.16/28

Example: 1-Place Boolean Buffer

o N

N = {in;,out; | i€ {0,1} }

S e {e0,1}

a := ing, iny, outp, outy
Buffgl)(a) : 1-place buffer containing s
Buff() (@) def D icl0.1} ini.BuffZ(.l) (a)
ut (@) ¥ out;.Buff) ()

[1 write an analogous definition for Buff§2)

o |

Foundations of Programming — Concurrency — Session 8 — April 11, 2002 — (produced on April 10, 2002, 18:59) — p.17/28

Example: 2-Place Boolean Buffer
- -

N = {in;,out; | i € {0,1}}

S e {¢0,1,00,01,10,11}
a := ing, iny, outp, outy
Bufng)(a) 2-place buffer containing s
Buff(®)(@) def D icl0.1} ini.BuffZ(.Q) (a)
Bufft” (@) € outy.Buft® (@) + ;¢ o1y ingBuff's (@)
Buffy, (@) < out;.Buff\" (@)

1 modify Buff§2) to release values in either order

[1 write an analogous definition for Buffg?’) L

o |

Foundations of Programming — Concurrency — Session 8 — April 11, 2002 — (produced on April 10, 2002, 18:59) — p.18/28

Labeled Transition Systems

-~

Definition:
An LTS (Q,7) over an action alphabet A:

[1 a set of states O = {qo,q1 ...}

-

[J aternary transition relation 7 C (Q x A x Q)

. : : M
A transition (¢, 1, ¢") € 7 is also written ¢ — ¢'.

9! Hn . .
If ¢ =, q1--- — qn, We call ¢, a derivative of g.

LTSs are automata, but ignoring starting and accepting states.
Transition Graphs are useful ...

o |

Foundations of Programming — Concurrency — Session 8 — April 11, 2002 — (produced on April 10, 2002, 18:59) — p.19/28

LTS - Sequential Expressions

o |

Definition: The LTS (P, 7) of process expressions over A has
P as states, and its transitions 7 are generated by the following
rules:

PRE: 1;. P p

LY Ny V' My 5 M
7 SUMo9: T
Mi+My — M{ Mi+My — Mé

SUM1:

PMy > P L\ def
DEF: — FA(d) =
A(b)y — P

o |

Foundations of Programming — Concurrency — Session 8 — April 11, 2002 — (produced on April 10, 2002, 18:59) — p.20/28

M 4

Concurrent Process Expressions (1)

o -

Definition: The set P of conc. proc. exp. is defined (precisely)
by the following BNF-syntax:

P:=Ad) | M | PP | (vaP
M:=0 | aP | M+M

We use P, (), P; to stand for process expressions.

[J (va) P restricts the scope of a to P
1 (vab) P abbreviates (va) (vb) P

o |

Foundations of Programming — Concurrency — Session 8 — April 11, 2002 — (produced on April 10, 2002, 18:59) — p.21/28

Concurrent Process Expressions (11)

. N

precedence: unary binds tighter than binary

(va)P1Q = ((va)P)|Q
aP+M = (a.P)+ M

1Y) M1 + Mo

(%) M7) + Mo

PlQ+ R
PlQ+ R

(P|Q)+ R
Pl(Q+ R)

Bound and Free Names

-

[J (va) P binds a in P T

[1 a occurs bound in P,
If it occurs in a subterm (va) @ of P

[J a occurs free in P,
If it occurs without enclosing (va) @ In P

[J Define fn(P) and bn(P) inductively on P

(sets of free/bound names of P):

m(P|Py) (P U ()

bn(P|Py) ' bn(P)Ubn(P)
i(wa)P) % () {a}
\— bn((va) P) e bn(P)U{a} J

Foundations of Programming — Concurrency — Session 8 — April 11, 2002 — (produced on April 10, 2002, 18:59) — p.23/28

a-Conversion & Substitution

-

[substitution %] P (for matching b and @)
replaces all free occurrences of q; in P by b;.

L](vb) b.a =7

[1 a-conversion, written =,
conflict-free renaming of bound names
(no new name-bindings shall be generated)

[1 substitution [%]P (for matching b and @)
replaces all free occurrences of q; in P by b;,
possibly enforcing a-conversion.

o |

Foundations of Programming — Concurrency — Session 8 — April 11, 2002 — (produced on April 10, 2002, 18:59) — p.24/28

Examples

(va) (@.0[b.0) =, (vc)(c.0b.0)
= (vb) (b.0/b.0)

UwhDBO[60) =0 ((vh)TO|a0)
—, ((vb)5.0]a0)

) ((va)b.a.0]b.0) =, ((va)@.a0]a0)
=+ ((vc)a.c0|a.0)

LTS - Concurrent Expressions (1)

-~

Definition: ... In addition:

-

P 5P P 5P

7 PAR9: 7
PP, — P||P PP, — P|P,

PAR7:

A / X /
P — P Q — Q

REACT: -
P‘Q N P/’Q/
pLp }
RES: " IF ué{a,a}

(va) P — (va) P’

o |

Foundations of Programming — Concurrency — Session 8 — April 11, 2002 — (produced on April 10, 2002, 18:59) — p.26/28

LTS - Concurrent Expressions (I1)

-~

Definition: ...

-

ALPHA: iF P=,0Q anp P'=,0Q)

Buffers, revisited . ..

N .= {in;,out;,x; | i€ {0,1} }
a = Ing, iny, outp, outy

1

Biuff® (@) & (wxg,x1) (Buft(ing,in1, X0, x1)
1

(]
| Buff,g)<xo,X1,0ut0,0Ut1>)

] compare the behavior of Buff®) and Bluff(?)

o |

Foundations of Programming — Concurrency — Session 8 — April 11, 2002 — (produced on April 10, 2002, 18:59) — p.28/28

	 Goals
	 Session 8: from $lambda $ to CCS
	 Foundational Calculi ?
	 Concurrency?
	 $lambda $-Calculus
	 Typical Reduction(Sequence)s
in $lambda $
	 Functional vs Concurrent Programming
	 Essence
	 CCS
	 Sequential Process Expressions (I)

	 Sequential Process Expressions (II)

	 Inductive Definitions
	 Inductive Definitions (II)

	 Simultaneous Substitution
	 Inductive Definitions (III)

	 Example: 1-Place Boolean Buffer
	 Example: 2-Place Boolean Buffer
	Labeled Transition Systems
	 LTS - Sequential Expressions
	 Concurrent Process Expressions (I)

	 Concurrent Process Expressions (II)

	 Bound and Free Names
	 $alpha $-Conversion & Substitution
	 Examples
	 LTS - Concurrent Expressions (I)

	 LTS - Concurrent Expressions (II)

	 Buffers, revisited etc

