o N

Foundations of Programming
— Concurrency —
Session 13 — April 29, 2002

Uwe Nestmann

EPFL-LAMP



Goals
E Session 13 T
e encodings in
e towards implementation: asynchrony
e towards distribution: from 7 to join
e from A tojoin ?
e encodings between 7 & join

[1 Session 14
e back to funnel / functional nets

o |

Foundations of Programming — Concurrency — Session 13 — April 29, 2002 — (produced on April 27, 2002, 12:53) — p.2/20



Encoding Tuples
-

[5(2).P] =
[y(@).P] =
Think about:

y<21,Z2>.P | y(m17m27m3)'Q —
Y(z1, 22).P | y(x1,22).Q | y(w1,w2).R —

[9(5).P] =
[y(@).P] =

- |

Foundations of Programming — Concurrency — Session 13 — April 29, 2002 — (produced on April 27, 2002, 12:53) — p.3/20



Implementing the Pi-Calculus

. N

goal: design of a programming language on top of «
(just like functional languages on top of \)

[1 observation: certain constructs are both

e difficult to implement

e Misinterpretable for the purpose of verification

e replacable by more primitive notions

[J result: a simpler, but (almost) equally expressive pi-calculus
e only asynchronous output
e NO choice/summation

o |

Foundations of Programming — Concurrency — Session 13 — April 29, 2002 — (produced on April 27, 2002, 12:53) — p.4/20



The Asynchronous Pi-Calculus

| |
P,Q == (vy)P | y(2) | y@.P | P|lQ | «P

restriction output input parallel replication

+ large amount of theory & techniques
equivalences, (sub-) types, polymorphism, tools . ..

+ enormous expressive power
functions, ADTSs, objects, classes, constraints . ..

+ efficient, type-safe implementation (Nomadic) Pict
[Pierce, Turner '93-'97], [Wojciechowski '98-'02]

— Pict on monoprocessor: only quasi-parallel

o |

Foundations of Programming — Concurrency — Session 13 — April 29, 2002 — (produced on April 27, 2002, 12:53) — p.5/20



Encoding Synchrony
f def

[P P2] = [P]|[Pz]



Encoding Summation

-

[1 (only shown on demand)



Encoding Lambda-Calculus

-

def

[](w) = Z(w)

[DzM](u) = w(@v).[M](v)

def

[(MN)](u) = (vv) ( [M](v)

| (v) T, u)

| sx(u).[N](u) )

Try to evaluate/encode (--- ((MyN1)Na)---)



Distributed Implementation

o N

y(2)-Q| - y(z)-R| -

~_
|

y(z)|-

[1 nearly every communication requires to solve a global
consensus problem

o |

Foundations of Programming — Concurrency — Session 13 — April 29, 2002 — (produced on April 27, 2002, 12:53) — p.9/20



Solution: Channel Managers

o N

y(2)-Q| - y(x)-R|

Y

[0 LOCALITY: at most 1 receiver per channel

Y ¥ syi(a)wo(z).a(z)

Foundations of Programming — Concurrency — Session 13 — April 29, 20 d on April 27, 2002, 12:53) — p.10/20



Locality syntactically: 74!

o N

channel manager
residence site = creation site

avoids unnecessary global communications

(vy) P def y(z)=PFP In Q
y(z).P
*P (vy) ( *y(x).P | Q)

channel managers are like function definitions
Eﬁique (replicated) receivers for the defined channels J

Foundations of Programming — Concurrency — Session 13 — April 29, 2002 — (produced on April 27, 2002, 12:53) — p.11/20



Consequences (1)

B

REPLICATION

y(x).P
(vy) ( *y(zx).P
SHARING

(vy) [ *y(x).P

.

Foundations of Programming — Concurrency — Sess

. restricted m-notation . . .

y(z)

y(z) )

Y(z1)

non
oul

Yy(z) non

§<22> ) ouli

|

ion 13 — April 29, 2002 — (produced on April 27, 2002, 12:53) — p.12/20



Consequences (I1)

B

. restricted m-notation . . .

PREFIX-NESTING
(vy) ( *y(z).u(v).P ) non
(vy) ( *y(z).u(v) ) oul
— In particular: INVERSION-OF-POLARITY
(vy) ( *y(z).z(u).P ) non

(vy) ( *y(z).z(u) ) oul

L (vy) ( *y(z).u(x) ) ouli J

Foundations of Programming — Concurrency — Session 13 — April 29, 2002 — (produced on April 27, 2002, 12:53) — p.13/20



Definition wrdet

-

CORE SYNTAX with y,  channel (names):

D := y(x)=P
P,Q := defDInQ ‘ y(x) ‘ P|Q

REDUCTION SEMANTICS

1 computational rule: def y(x)=P in (Q|y(2))
— def y(a)=P in (Q|P[*s))

+ structural rules

o |

Foundations of Programming — Concurrency — Session 13 — April 29, 2002 — (produced on April 27, 2002, 12:53) — p.14/20



Examples 7rdet

-

FORWARDER

def y(x)=u(x) In y(2)

— def y(x)=u(x) INn u(z)
APPLICATOR

def eval(f, x)=f(x) In eval(square, 5)

— def eval(f,x)=Ff(x) In square(5)

o |

Foundations of Programming — Concurrency — Session 13 — April 29, 2002 — (produced on April 27, 2002, 12:53) — p.15/20



EXpressiveness?

wdet is not expressive enough:

def Din (P|Q) £ def DinP | defDinQ

[J no synchronization over parallel composition

[1 only local/functional computations
by sending and receiving individual messages

o |

Foundations of Programming — Concurrency — Session 13 — April 29, 2002 — (produced on April 27, 2002, 12:53) — p.16/20



Join-Synchronization: r;

-

CORE SYNTAX with y, x, u, w channel (names):

-

J
D == y)|u(w) =P
P,Q := defDInQ | y(x) | P|Q

REDUCTION SEMANTICS generalization of rdet:

1 computational rule: def J=P in (Q|Jo)
— def J=Pin (Q|Po)

+ structural rules

o |

Foundations of Programming — Concurrency — Session 13 — April 29, 2002 — (produced on April 27, 2002, 12:53) — p.17/20



Examples 7; (1)

Let D be defined as y1(x1)|y2(x2) = P. T

def D in a(z1)|b(z2)|c(z3)

def D in y;(2)

def D in y1(z1)|y2(22)|Q

|

Foundations of Programming — Concurrency — Session 13 — April 29, 2002 — (produced on April 27, 2002, 12:53) — p.18/20



Examples 7; (I1)

WULTIPLEXER T
def y(x)|u(w)=z(u,w) In ...

APPLICATOR
def apply(f)|args(w)=Ff(w) In ...
PRINTER-SPOOLER
def ready(printer) | job(doc) = printer(doc)
IN  ready(laser) | job(ps) | job(pdf)

é e o o

o |

Foundations of Programming — Concurrency — Session 13 — April 29, 2002 — (produced on April 27, 2002, 12:53) — p.19/20



-

Expressiveness!

[dety(z)|u(w)=PInQ]

[#(u)]

L (vy,u) (y(@).uw(w).[P]][Q])

= w(u)

[P|Q] € [P]|[Q]

[(vy) P] < defyo(ao, 2i)|yi(x)=r (0, ;) in [ P]
[5(2)] = o2 2:)
[y(z).P] ¥ defu(zo,z;)=[P]iny;(x)
m;-calculus “ =" m4-calculus



	 Goals 
	 Encoding Tuples 
	 Implementing the Pi-Calculus 
	 The Asynchronous Pi-Calculus 
	 Encoding Synchrony 
	 Encoding Summation 
	 Encoding Lambda-Calculus 
	 Distributed Implementation 
	 Solution: Channel Managers 
	 Locality syntactically: $pi ^{operatorname {def}}$ 
	 Consequences (I)

	 Consequences (II)

	 Definition �oldmath $pi ^{operatorname {def}}$ 
	 Examples �oldmath $pi ^{operatorname {def}}$ 
	 Expressiveness? 
	 Join-Synchronization: �oldmath $pi _j$ 
	 Examples �oldmath $pi _j$ (I)

	 Examples �oldmath $pi _j$ (II)

	 Expressiveness! 

