
Foundations of Programming

– Concurrency –

Session 11 – April 22, 2002

Uwe Nestmann

EPFL-LAMP

Foundations of Programming – Concurrency – Session 11 – April 22, 2002 – (produced on April 21, 2002, 17:29) – p.1/20



Goals

� Session 11
• from CCS to π-calculus
− pragmatic
− syntactic
− (semantic)

� Session 12
• programming in Nomadic Pict

Foundations of Programming – Concurrency – Session 11 – April 22, 2002 – (produced on April 21, 2002, 17:29) – p.2/20



Warming Up / Repetition

Is inequality an equivalence relation?

Check A ≈ 0 for A
def
= τ.A . . .

. . . and compare to A ∼ 0.

Foundations of Programming – Concurrency – Session 11 – April 22, 2002 – (produced on April 21, 2002, 17:29) – p.3/20



Unbounded Structures: Stacks (I)

N := { empty } ∪ { pushv, popv }v∈V

~v ∈ V
∗

Stack~w( empty,
−−−→
pushv,

−−→popv )

Stack
def
=

∑

v pushv.Stackv + empty.Stack

Stackv,~w
def
=

∑

u pushu.Stacku,v, ~w + popv.Stack~w

Foundations of Programming – Concurrency – Session 11 – April 22, 2002 – (produced on April 21, 2002, 17:29) – p.4/20



Unbounded Structures: Stacks (II)

N := { empty, drop } ∪ { pushv, popv, notv, pullv }v∈V

E(
−→
N ) := E( empty, drop,

−−−→
pushv,

−→notv,
−−→popv,

−−→
pullv )

X〈
−→
N 〉_ Y 〈

−→
N 〉 := (ν~a, b,~c)

(X〈
−→
N 〉[~a,b,~c/−→notv,drop,−−→pullv

] | Y 〈
−→
N 〉[~a,b,~c/−−→pushv,empty,−−→popv

] )

E :=
∑

v pushv.(Cv
_ E) + empty.E

Cv :=
∑

u pushu.(Cu
_ Cv) + popv.D

D :=
∑

u pullu.Cu + drop.E

S~v := Cv1

_ · · ·_ Cvn

_ E

Stack~v ≈ S~v

Foundations of Programming – Concurrency – Session 11 – April 22, 2002 – (produced on April 21, 2002, 17:29) – p.5/20



Criticism

Example:
Calculate the states for the transition sequence

push1

−−−−→
push2

−−−−→
pop2

−−−−→ and “stabilize” the remainder.

� D’s cannot be reused for storing new values
(neither inner nor outer D’s!).

� E’s are never “used”, pile up and stay around.
(Note that, although E _ E ∼ E,
explicit garbage collection would be required.)

Foundations of Programming – Concurrency – Session 11 – April 22, 2002 – (produced on April 21, 2002, 17:29) – p.6/20



Unbounded Structures: Stacks (III)

E :=
∑

v pushv.Cv + empty.E

Cv :=
∑

u pushu.(Cu
_ Cv) + popv.D + notv.D

D :=
∑

u pullu.Cu + drop.E +
∑

u pushu.Cu

S~v := Cv1

_ · · ·_ Cvn

_ E

� What are the problems of this “implementation”?

� Think about how to derive unbounded buffers from
unbounded stacks . . .

Foundations of Programming – Concurrency – Session 11 – April 22, 2002 – (produced on April 21, 2002, 17:29) – p.7/20



Turing Power

A Turing-machine consists of:

� a finite alphabet of symbols

� an infinite tape

� a finite control mechanism

� movement or r/w-head to left or right

A Turing-machine can be nicely simulated with concurrent
processes by two stacks (the tape). Neither an infinite alphabet
nor infinite summation is necessary for this. [Milner 89]

Foundations of Programming – Concurrency – Session 11 – April 22, 2002 – (produced on April 21, 2002, 17:29) – p.8/20



Turing Power (II)

=⇒

1. The language/calculus of concurrent process expressions is
Turing powerful.

2. Since the halting problem for the representation TM of some
Turing machine can be encoded as TM ≈ . . .
weak bisimulation is . . .

Foundations of Programming – Concurrency – Session 11 – April 22, 2002 – (produced on April 21, 2002, 17:29) – p.9/20



Expressiveness

Still, concurrent process expressions are,
in some particular sense, not expressive enough:
it is not possible to cut out dead cells E.

If we had the possibility to dynamically change the
interconnection structure among process components, cells
could drop out by connecting their left and right neighbors
together.

One way to do this is the transmission of “channels over
channels”.

Foundations of Programming – Concurrency – Session 11 – April 22, 2002 – (produced on April 21, 2002, 17:29) – p.10/20



Name-Passing Syntax

negative actions a〈v〉: send name v over name a.

positive actions a(x): receive any name, say v, over name a
and “bind the result” to name x.

Binding results in substitution
of the formal parameter x by the actual parameter v.

polyadic communication a〈~v〉 and a(~x) (~x pairwise different)
transmit many values at a time.

Foundations of Programming – Concurrency – Session 11 – April 22, 2002 – (produced on April 21, 2002, 17:29) – p.11/20



Hand-Over Protocol

(“external” slide)

Foundations of Programming – Concurrency – Session 11 – April 22, 2002 – (produced on April 21, 2002, 17:29) – p.12/20



Syntax Conventions

N names a, b, c . . . , x, y, z

A actions π ::= x(y)
∣

∣ x〈y〉
∣

∣ τ

� finite sequences ~a . . .

� parametric processes with defining equations
are modeled via the more primitive notion
of replication and name-passing

� All values/variables/channels are just names.
Parentheses usually indicate bindings.
Angled brackets are often omitted.

Foundations of Programming – Concurrency – Session 11 – April 22, 2002 – (produced on April 21, 2002, 17:29) – p.13/20



Syntax / Grammar

Definition: The set P of π-calculus proc. exp. is defined
(precisely) by the following syntax:

P ::= M
∣

∣ P |P
∣

∣ (νa)P
∣

∣ !P

M ::= 0
∣

∣ π.P
∣

∣ M + M

We use P,Q, Pi to stand for process expressions.

� (νab)P abbreviates (νa) (νb)P

�
∑

i∈{1..n} πi.Pi abbreviates π1.P1 + . . . + πn.Pn

Foundations of Programming – Concurrency – Session 11 – April 22, 2002 – (produced on April 21, 2002, 17:29) – p.14/20



Bound and Free Names

� (νx)P and y(x).P bind x in P

� x occurs bound in P , if it occurs
in a subterm (νx)Q or y(x).P of P

� x occurs free in P , if it occurs
without enclosing (νx)Q or y(x).P in P

� Note the use of parentheses (round brackets).

� Define fn(P ) and bn(P ) inductively on P
(sets of free/bound names of P ) . . .

Foundations of Programming – Concurrency – Session 11 – April 22, 2002 – (produced on April 21, 2002, 17:29) – p.15/20



Mobility ? “Flowgraphs” !

P=x〈z〉.P ′

Q=x(y).Q′

R=. . . z . . .

Assume that z 6∈ fn(P ′).

Depict the transition
(νz) ( P |R ) | Q −→ P ′ | (νz) ( R|Q′ )

as a flow graph (with scopes) and verify it using the reaction
and congruence rules.

Foundations of Programming – Concurrency – Session 11 – April 22, 2002 – (produced on April 21, 2002, 17:29) – p.16/20



Exercise: Overtaking Cars

A car C〈n, b, f 〉 on a road is connected to its back and front
neighbor through b and f , respectively, while n just represents
its identifier.

The road is assumed to be infinite, so we ignore any boundary
problem, and it is static in the sense that no cars may enter or
leave the road.

Define C〈n, b, f 〉 such that a car may overtake another car.
Beware of deadlocks and nested overtake attempts. You are not
allowed to change the parameter n of instances of C.

Foundations of Programming – Concurrency – Session 11 – April 22, 2002 – (produced on April 21, 2002, 17:29) – p.17/20



Solution: Overtaking Cars

many implementations might be valid . . .
. . . here’s just one proposal

Car〈x, b, f 〉
def
=

Fast〈x, b, f 〉
def
=

Slow〈x, b, f, b′ 〉
def
=

Foundations of Programming – Concurrency – Session 11 – April 22, 2002 – (produced on April 21, 2002, 17:29) – p.18/20



Buffers in New Clothes . . .

B( i, o )
def
= i(x).C〈x, i, o 〉

C(x, i, o )
def
= o〈x〉.B〈 i, o 〉

+ i(y).( C〈 y, i, o 〉_ C〈x, i, o 〉 )

where
X〈 i, o 〉_ Y 〈 i, o 〉

def
=

(νm) ( X〈 i, o 〉[m/o] | Y 〈 i, o 〉[
m/i] )

� Observe how much nicer name/value-passing is :-)

� Follow the sequence
i1
−−→

i2
−−→

ō2
−−−→

···
−−→

Foundations of Programming – Concurrency – Session 11 – April 22, 2002 – (produced on April 21, 2002, 17:29) – p.19/20



Elastic Buffers

Make the buffer elastic,
i.e., make empty cells disappear!

Several design decisions need to be taken concerning the
question when an empty cell should cut itself out of a chain and
die.

�� if empty cell is next to a full/empty cell?

� if empty cell is left/right to a cell?

� should it be allowed (suicide)
or forced (murder) to die?

Foundations of Programming – Concurrency – Session 11 – April 22, 2002 – (produced on April 21, 2002, 17:29) – p.20/20


	 Goals 
	 Warming Up / Repetition 
	 Unbounded Structures: Stacks (I)
	 Unbounded Structures: Stacks (II)
	 Criticism 
	 Unbounded Structures: Stacks (III)
	 Turing Power 
	 Turing Power (II)

	 Expressiveness 
	 Name-Passing Syntax 
	 Hand-Over Protocol 
	 Syntax Conventions 
	 Syntax / Grammar 
	 Bound and Free Names 
	 Mobility ? ``Flowgraphs'' ! 
	 Exercise: Overtaking Cars 
	 Solution: Overtaking Cars 
	 Buffers in New Clothes etc 
	 Elastic Buffers 

