Foundations of Programming – Concurrency – Session 10 – April 18, 2002

Uwe Nestmann

EPFL-LAMP

Foundations of Programming – Concurrency – Session 10 – April 18, 2002 – (produced on April 17, 2002, 21:11) – p.1/6

Session 10: The Scheduler Problem

- □ informal specification
 - black box
 - flow graph
- □ specification as sequential process expression
 - transition graph
- □ implementation as concurrent process expression
 - flow graph
 - transition graph ?
- □ proof "by hand"
- ☐ proof using the CWB

Informal Specification [Mil99, § 3.6]

- \Box processes $P_i, 1 \leq i \leq n$ to be scheduled
- $\Box P_i$ starts by pressing a_i of the scheduler
- $\Box P_i$ completes by signalling b_i to the scheduler
- \Box each P_i must not run two tasks at a time
- \Box tasks of different P_i may run at the same time
- $\Box a_i$ are required to occur cyclically (initially, 1 starts)
- \Box for each *i*, *a_i* and *b_i* must occur cyclically
- permit maximal "pressure"

Formal Specification [Mil99, § 3.6]

$$\begin{split} i \in \{1 \dots, n\} & X \subseteq \{1 \dots, n\} \\ \mathbf{S}_{i,X}(\vec{a}, \vec{b}) \stackrel{\text{def}}{=} & \text{scheduler, where } i \text{ is next and } X \text{ are running} \\ & (\text{* we omit the parameters in the following *}) \\ \hline \mathbf{S}_{i,X} & \stackrel{\text{def}}{=} & \mathbf{S}_{1,\emptyset} \\ \mathbf{S}_{i,X} & \stackrel{\text{def}}{=} & \left\{ \begin{split} \sum_{j \in X} b_j . \mathbf{S}_{i,X-j} & (i \in X) \\ \sum_{j \in X} b_j . \mathbf{S}_{i,X-j} + a_i . \mathbf{S}_{i+1 \mod n, X \cup i} & (i \notin X) \end{split} \right. \end{split}$$

- \Box draw the transition graph for n = 2
- \Box show that the scheduler is never deadlocked
- \Box what is the difference when dropping $i \in X$?

Formal "Implementation" (I) [§ 7.3]

$$\begin{array}{rcl}
A(a,b,c,d) & \stackrel{\text{def}}{=} & a.c.b.\overline{d}.A \\
\hline A(a,b,c,d) & \stackrel{\text{def}}{=} & a.C\langle a,b,c,d \rangle \\
C(a,b,c,d) & \stackrel{\text{def}}{=} & c.B\langle a,b,c,d \rangle \\
B(a,b,c,d) & \stackrel{\text{def}}{=} & b.D\langle a,b,c,d \rangle \\
D(a,b,c,d) & \stackrel{\text{def}}{=} & \overline{d}.A\langle a,b,c,d \rangle \\
\hline A_i & \stackrel{\text{def}}{=} & A\langle a,b,c_i,c_{i-1} \rangle \\
\hline & \ddots \\
S(\vec{a},\vec{b}) & \stackrel{\text{def}}{=} & (\boldsymbol{\nu}\vec{c}) \left(A_1 | D_2 | \cdots | D_n \right) \\
\hline \end{array}$$

Formal "Implementation" (II) [§ 7.3]

$$\begin{array}{rcl} A(a,b,c,d) & \stackrel{\text{def}}{=} & a.c.(b.\overline{d}.A + \overline{d}.b.A) \\ \hline A(a,b,c,d) & \stackrel{\text{def}}{=} & a.C\langle a,b,c,d \rangle \\ C(a,b,c,d) & \stackrel{\text{def}}{=} & c.E\langle a,b,c,d \rangle \\ E(a,b,c,d) & \stackrel{\text{def}}{=} & b.D\langle a,b,c,d \rangle + \overline{d}.B\langle a,b,c,d \rangle \\ B(a,b,c,d) & \stackrel{\text{def}}{=} & b.A\langle a,b,c,d \rangle \\ \hline D(a,b,c,d) & \stackrel{\text{def}}{=} & \overline{d}.A\langle a,b,c,d \rangle \\ \hline A_i & \stackrel{\text{def}}{=} & A\langle a,b,c_i,c_{i-1} \rangle \\ & \ddots \\ S(\vec{a},\vec{b}) & \stackrel{\text{def}}{=} & (\boldsymbol{\nu}\vec{c}) \left(A_1 | D_2 | \cdots | D_n \right) \\ \hline \end{array}$$