
Foundations of Programming

– Concurrency –

Session 10 – April 18, 2002

Uwe Nestmann

EPFL-LAMP

Foundations of Programming – Concurrency – Session 10 – April 18, 2002 – (produced on April 17, 2002, 21:11) – p.1/6

Session 10: The Scheduler Problem

� informal specification
• black box
• flow graph

� specification as sequential process expression
• transition graph

� implementation as concurrent process expression
• flow graph
• transition graph ?

� proof “by hand”

� proof using the CWB

Foundations of Programming – Concurrency – Session 10 – April 18, 2002 – (produced on April 17, 2002, 21:11) – p.2/6

Informal Specification [Mil99, § 3.6]

� processes Pi, 1 ≤ i ≤ n to be scheduled

� Pi starts by pressing ai of the scheduler

� Pi completes by signalling bi to the scheduler

� each Pi must not run two tasks at a time

� tasks of different Pi may run at the same time

� ai are required to occur cyclically (initially, 1 starts)

� for each i, ai and bi must occur cyclically

� permit maximal “pressure”

Foundations of Programming – Concurrency – Session 10 – April 18, 2002 – (produced on April 17, 2002, 21:11) – p.3/6

Formal Specification [Mil99, § 3.6]

i ∈ {1 . . . , n} X ⊆ {1 . . . , n}

Si,X(~a,~b)
def
= scheduler, where i is next and X are running

(* we omit the parameters in the following *)

Scheduler
def
= S1,∅

Si,X
def
=

{

∑

j∈X bj .Si,X−j (i ∈ X)
∑

j∈X bj .Si,X−j + ai.Si+1mod n,X∪i (i 6∈ X)

� draw the transition graph for n = 2

� show that the scheduler is never deadlocked

� what is the difference when dropping i ∈ X?

Foundations of Programming – Concurrency – Session 10 – April 18, 2002 – (produced on April 17, 2002, 21:11) – p.4/6

Formal “Implementation” (I) [§ 7.3]

A(a, b, c, d)
def
= a.c.b.d.A

A(a, b, c, d)
def
= a.C〈 a, b, c, d 〉

C(a, b, c, d)
def
= c.B〈 a, b, c, d 〉

B(a, b, c, d)
def
= b.D〈 a, b, c, d 〉

D(a, b, c, d)
def
= d.A〈 a, b, c, d 〉

Ai
def
= A〈 a, b, ci, ci−1 〉

. . .

S(~a,~b)
def
= (ν~c)

(

A1|D2| · · · |Dn

)

Scheduler
?
≈ S〈~a,~b 〉

Foundations of Programming – Concurrency – Session 10 – April 18, 2002 – (produced on April 17, 2002, 21:11) – p.5/6

Formal “Implementation” (II) [§ 7.3]

A(a, b, c, d)
def
= a.c.(b.d.A + d.b.A)

A(a, b, c, d)
def
= a.C〈 a, b, c, d 〉

C(a, b, c, d)
def
= c.E〈 a, b, c, d 〉

E(a, b, c, d)
def
= b.D〈 a, b, c, d 〉 + d.B〈 a, b, c, d 〉

B(a, b, c, d)
def
= b.A〈 a, b, c, d 〉

D(a, b, c, d)
def
= d.A〈 a, b, c, d 〉

Ai
def
= A〈 a, b, ci, ci−1 〉

. . .

S(~a,~b)
def
= (ν~c)

(

A1|D2| · · · |Dn

)

Scheduler
?
≈ S〈~a,~b 〉

Foundations of Programming – Concurrency – Session 10 – April 18, 2002 – (produced on April 17, 2002, 21:11) – p.6/6

	 Session 10: The Scheduler Problem
	 Informal Specification [Mil99, S ~3.6]
	 Formal Specification [Mil99, S ~3.6]
	 Formal ``Implementation'' (I)
[S ~7.3]
	 Formal ``Implementation'' (II)
[S ~7.3]

