
A Lambda Interpreter

• We studied Lambda Calculus as a foundation for functional programs

• Now we implement the operational semantics defined by the λ-calculus in

the form of an interpreter

• An interpreter for a programming language is a function that, when

applied to a term, performs the actions required to evaluate the

expression:

interpreter : Term→ V alue

• Lambda Interpreter: β-reduction + Evaluation Strategy

• Call-By-Name

• Call-By-Value

• Call-By-Need

1

Representation of Lambda Terms

• Syntax of Lambda-Calculus:

Names x ∈ N
Terms E ::= x | λx.E | E E′

• Names are implemented with strings

• Lambda terms are represented as trees:

val Tree = {
def Name(x) = { def match(v) = v.Name(x) }
def Lambda(x, t) = { def match(v) = v.Lambda(x, t) }
def Apply(t, t’) = { def match(v) = v.Apply(t, t’) }

}

2

Evaluation of Lambda Terms

• Semantics of λ-calculus:

(β) (λx.E)E′ → [E′/x] E

• Definition of substitutions [E/x]:

[E/x] x = E

[E/x] y = y (x 6= y)

[E/x] λx.E′ = λx.E′

[E/x] λy.E′ = λy.[E/x]E′ (x 6= y, y 6∈ fn(E))

[E/x] (E′ E′′) = ([E/x]E′) ([E/x]E′′)

3

Implementing Substitutions

We implement a substitution as a visitor:

def subst(y, t) = {
def Name(x) = if (x == y) t else Tree.Name(x)

def Lambda(x,t’) = {
val z = newvar

Tree.Lambda(z,t’.match(subst(x,Tree.Name(z)))

.match(subst(y,t)))

}
def Apply(t1,t2) = Tree.Apply(t1.match(subst(y,t)),

t2.match(subst(y,t)))

}

The function newvar returns a fresh variable when called.

4

Substitutions

Example usage:

> val t = Tree.Lambda("x",Tree.Apply(Tree.Apply(Tree.Name("x"),

Tree.Name("y")), Tree.Name("y")))

’val t = <record id=2, adr=1, type=(match)>’
> t.match(toString)

"(x|((x y) y))"

> t.match(subst("y", Tree.Lambda("z", Tree.Name("z"))))

.match(toString)

"(x|((x (z|z)) (z|z)))"

5

Implementing β-Reduction

• Here’s an implementation of the β-reduction rule with call-by-name

evaluation strategy:

val reduce = {
def Name(x) = Tree.Name(x)

def Lambda(x, t) = Tree.Lambda(x, t)

def Apply(t, t’) = {
t.match(reduce).match {
def Name(x) = Tree.Apply(Tree.Name(x), t’)

def Lambda(x, b) = b.match(subst(x, t’)).match(reduce)

def Apply(s, t) = Tree.Apply(Tree.Apply(s, t), t’)

}
}

}

6

A Call-By-Value Lambda Interpreter

• What changes if we are using the call-by-value evaluation strategy?

val reduce = {
def Name(x) = Tree.Name(x)

def Lambda(x, t) = Tree.Lambda(x, t)

def Apply(t, t’) = {
t.match(reduce).match {
def Name(x) = Tree.Apply(Tree.Name(x), t’)

def Lambda(x, b) = b.match(subst(x, t’.match(reduce)))

.match(reduce)

def Apply(s, t) = Tree.Apply(Tree.Apply(s, t), t’)

}
}

}
• This is more efficient as call-by-name, because the argument is evaluated

only once

7

Environments

• Implementing β-reduction directly with substitutions has several

disadvantages:

• α-renaming is needed, and

• it is very inefficient

• Solution: Environments

• An environment is a finite mapping from names to values

• Instead of substituting a parameter name with the actual argument

in the β-reduction rule, a mapping name→ argument is added to

the environment and the body of the λ-abstraction is evaluated using

this extended environment

• A new mapping for a name shadows an existing mapping for the

same name

8

An Interpreter with Environments

def eval(env) = {
def Name(x) = env(x)

def Lambda(x, t) = Tree.Lambda(x, t)

def Apply(t, t’) = {
t.match(eval(env)).match {
def Name(x) = Tree.Name(x)

def Lambda(x, b) = b.match(

eval(enter(x, t’.match(eval(env)), env)))

def Apply(t, t’) = Tree.Apply(t, t’)

}
}

}

Is this implementation correct?

Just think about evaluating (λx.λy.x) a b

9

We need Closures

• When a function is applied, it’s body is evaluated in an environment that

binds the formal parameter to the argument of the application

(β-reduction)

• If the body reduces to a function (λ-abstraction), it has to retain it’s

bindings of free variables. It must be a closed entity, independent of the

environment in which it is used: Closure

• Consequence: evaluation of a λ-abstraction yields a closure (which binds

all free variables within the abstraction)

• A closure is represented by a tupel: (λ− abstraction, environment)

10

A Call-By-Value Interpreter with Environments

• From now on we consider global free variables as illegal; i.e. evaluating

the term (λx.x)a yields an error, since a is not defined

• We distinguish between terms and values: the interpreter maps terms to

values; an environment maps names to values.

val Value = {
def Closure(x,t,env) = { def match(v) = v.Closure(x,t,env) }

}
• Let’s write an eval function that implements the interpreter:

def eval(env) = {
def Name(x) = env(x)

def Lambda(x, t) = Value.Closure(x, t, env)

def Apply(t, t’) = t.match(eval(env))

.match(apply(t’.match(eval(env))))

}

11

A Call-By-Value Interpreter with Environments

Here’s the missing apply function:

def apply(arg) = {
def Closure(x,t,env) = t.match(eval(enter(x,arg,env)))

}

12

Your Task

• Try to find a good representation for environments

• Write an interpreter for an extension of the call-by-value λ-calculus in

Funnel

• Here’s the abstract syntax:

Names x

Numbers i

Terms E ::= x | i | λx.E | E E′

• In addition to the pure λ-calculus your interpreter should support integer

numbers and the initial environment should offer basic operations plus,

minus, times, div, etc. on numbers

13

